

Enhancement Tools for Arabic Web Search
A Statistical Approach

Adnan H. Yahya

Department of Computer Systems Engineering

Birzeit University

Birzeit, Palestine

yahya@birzeit.edu

Ali Y. Salhi

Department of Computer Systems Engineering

Birzeit University

Birzeit, Palestine

asalhi@birzeit.edu

Abstract— The Arabic web content is growing rapidly and the

need for its efficient management is gaining importance and the

morphological complexity of Arabic raises many challenges in

this regard. This paper reports on some of our work aimed at

designing text mining and query pre-processing tools that are

able to efficiently process and search large quantities of Arabic

web data. In our research we try to address the challenges Arabic

poses for natural language processing (NLP) and information

retrieval: root extraction, language detection, and Arabic query

correction, suggestion and expansion. While not reported in

detail here, we are also developing tools for automatic Arabic

document categorization. All through, we employ a

statistical/Corpus-based approach based on data obtained from a

variety of sources. Based on corpus statistics we constructed

databases of words and their frequencies as single, double and

triple expressions and used that as the infrastructure for the well

structured search aid tools that are able to handle the

sophisticated nature of Arabic, and capable of being integrated

into existing web search engines and document processing

systems. We also utilize context analysis and spellchecking of the

user queries to enable a more complete and efficient search.

While the results reported here are promising, they must be

viewed as work in progress, still in need of testing, refining,

integration and deployment in real life settings.

Keywords-component; Natural Language Processing;

Information retrieval; Root extraction; Language detection; Arabic

query correction

I. INTRODUCTION

As the World-Wide Web (Web) rapidly expands, structured
information retrieval systems that help find and manage needed
information efficiently acquire added importance. That
explains the growing influence of search engine companies.
The estimates of the current size of the Web vary from 15 to 30
billion pages [1]. It is a real challenge to deal with this volume,
and studies show that the growth rate of the Web is large and
sustained, also because many existing pages are being
continuously updated. The share of the Arabic language is
around 1.4% of the Web total pages [2]. Despite this small
share, retrieving Arabic information seems to be an annoying
and unsatisfying experience for many users.

The main focus of this paper is to report on our work aimed
at designing text mining and query pre-processing tools that are
able to efficiently process and search large quantities of Arabic

web data. In our research we try to address some of the
challenges Arabic poses for NLP and information retrieval:
root extraction, language detection, and Arabic query
correction, suggestion and expansion. All through, we employ
a statistical/corpus-based approach based on contemporary data
obtained from a large variety of sources. Based on corpus
statistics we constructed databases that have Arabic words with
their frequencies and used that as basis to create well structured
search aid tools that are able to handle the sophisticated nature
of the Arabic language and which are capable of being
integrated into existing web search engines and document
processing systems. Additionally, we utilize context analysis
and spellchecking to enable a more complete and efficient
response to user queries.

II. BACKGROUND

A. Search Engines, Historical Review

Going back to the history of Web search, we see that the
first tool used for searching the Internet was Archie. It was
created in 1990 by Alan Emtage. The first Web search engine
was Wandex, with indexes collected by the World Wide Web
Wanderer, a Web crawler developed by Matthew Gray in 1993.
Lycos began in the spring of 1994; Yahoo became available in
the same year. NCSA Mosaic in 1993 and Netscape in 1994[3]
and in 1998 Larry Page and Sergey Brin came up with Google;
a revolution to the search engine concept with all the new
ideas, algorithms and visions that came with it.

B. Search Engine Structure

Web search engine technology consists of crawling
strategies, storage, indexing, ranking techniques and Query
engine [4]. However, our focus in this paper is on the
enhancements that need to be made for query pre-processing
using tools that enable efficient search in large quantities of
Arabic web data.

C. Helping Search Engines Understand What Users Want

The ambiguity in words/phrases is less of an obstacle when
it comes to human beings; they have many communication
tools that help remove this ambiguity. Things are more
complicated for machines. Search engines have to understand
the user intention so as to provide satisfactory results sought by
that user. The search engine can achieve that through a

multiplicity of mechanisms such as Query Suggestion, Cross
Language Query Suggestion (Suggestion and Translation to
different languages), Web and Query Categorization and Query
Analysis and NLP tools aimed at enhancing the user
experience when performing a search by providing language
support as spell checking, auto suggestions and query
expansion, language detection, proper name correction and
others. In the following sections we will discuss some of our
work on developing such Query Analysis/NLP tools.

III. ARABIC RESOURCES CONSTRUCTION

In this section we present data resources for query content
analysis and Arabic NLP to help deal with the complex nature
of Arabic in order to build efficient Arabic information
retrieval tools.

A. Arabic, the Big Challenge

Arabic is a highly inflected language with a rich and
complex morphological system. Any given Arabic lemma
usually has more than one word representation [5]. Arabic
NLP faces major challenges that are not necessarily shared
with many other languages, challenges such as complex
linguistic structure, the specific features of its orthographic
system, and processing colloquial Arabic [6]. This in turn adds
complexity to retrieving information using Arabic language.

B. Arabic Corpus Construction

The development of NLP tools and methods needs the
availability of extensive and reliable text corpus. Throughout
the process of developing our Arabic NLP tools we employed a
statistical/Corpus approach based on contemporary data we
obtained from various sources (newspapers: Al-Sharq Al-
Awsat , Al-Quds newspaper). The corpus of news articles had
around 75 million words of written Arabic in 80,000 pages
covering different topics. The Corpus construction was carried
out by crawling Al-Sharq Al-Awsat newspaper website
(http://www.aawsat.com/), and Al-Quds newspaper PDFs
(http://www.alquds.com/pdf). A filtration method is used for
the enhancement of the text by extracting numbers,
punctuations, diacritics and Shadda (ّ). Data statistics on our
corpus are shown in Table I.

C. Construction of Arabic Stop Word List

Stop words is a list of very common words which are
filtered prior to/after processing of natural language data [7].

TABLE I. DATA STATISTICS

Description Statistics

Processed Words 75,132,120

Arabic Words (no repeat) 962,879

Arabic Words (F > 1) a 519,827

Multi words expression (no repeat) 1,843,274

Triple words expression (no repeat) 1,414,010

Number of documents (PDFs , HTML) Around 80,000

Average letters per word 5.4 letter

The most frequent word 1,203,663 (��)
Number of letters for the longest word 15 (�����	
 (ا����و��

a. F = Frequency of appearance. Words are considered different if they differ in shape (no stemming or

letters filtering is done).

We created an Arabic stop word list that consists of the
Arabic prepositions, pronouns, interrogatives, particles, words
with the highest frequencies from our text corpus database and
words translated from English stop words list[8] using Google
online translator. Also an open source Arabic stop word list
was integrated later into our list [9].

The Arabic stop words list has 1065 words, which is a large
number compared to English which has around 320 stop words
[8]. That is because Arabic has much richer morphology than
English, Arabic has two genders (feminine and masculine), and
three numbers (singular, dual and plural) and sometimes
pronouns and prepositions are joined together to form new
words. So pronouns, prepositions and frequent words can have
more than one form. For example the word (in- ��) can have
the following forms (، و��
	 ، و���	 ، ����	 ،���� ، ���	 ، ��� ،و�� ، و���

	، ��� ، و��� �� ،��� ، ����،	����،���� ،	
، �����	،���	، و���،و����	، ��
ا��.. ،�����، ����، و����	، و ����، و����، ���� ، و���� ، ����،����)

Each such Arabic word will translate into multiple English
stop words: and in it, and in, in it…etc.

IV. ARABIC NATURAL LANGUAGE PROCESSING

TOOLS

In this section we present some Arabic NLP tools that we
built and tested toward the goal of improving information
retrieval in Arabic. This is a partial collection of the tools we
worked on and may be viewed as the infrastructure for other
work.

A. Arabic Language Detector

This allows us to determine if the language of the web
document is Arabic, and not any other languages that uses
Arabic script, say Persian or Urdu. Such tool comes handy to
crawlers in order to crawl and index the Arabic web contents
only. The automatic language detector determines the language
of the document or query by comparing the words in the
document/query with the words in our (partially built) corpus
and calculating the percentage of misspelled words. A
derivative tool was a plug-in to restore Arabic text entered in
Latin due to failure to switch keyboard entry language.

B. Arabic Query Live Suggestion

In order to make the search process interactive, we built
query suggestion feature. When the user types in the search
box, the system queries the suggestion tables to bring a list of
possible completions/alternatives. Once the list has been
retrieved, it is displayed in a pop-up box that appears under the
search box, and allows the user to choose a suggested search
term (check Fig 1). If the user continues to type, a possibly new
set of suggestions may be displayed. This will limit the number
of words users’ type into a query, present similar queries and
eliminate typos, and may introduce a learning component into
the interaction, something that may speed up the search
process.

C. Stemming and Root Extraction

Arabic is a highly inflected language which has as a rich
and complex morphological system. Arabic words are usually

Figure 1. Live Suggestion Example

formed as a sequence of prefix, core, and suffix. Indexing the
Web based on the roots, which are far more abstract than
stems, will improve the retrieval effectiveness over stems and
words. In this section we illustrate a new stemming and root
extraction technique for Arabic words. Such a tool will help us
build the expansion algorithm for Arabic quires. Arabic words
are divided into three types: noun, verb and particle. Nouns and
verbs are derived from a set of around 10,000 roots and they
commonly consist of three or four, and rarely five letters [10].
Arabic words are formed by adding prefixes (consonants,
vowels at the start), infixes (vowels) and suffixes (consonants
and vowels at the end) to the root. So, finding the root basically
means reversing the process of forming Arabic words by
removing prefixes and suffixes, then predicting the root of the
core word.

The form of an Arabic word is usually determined by its
gender, number, grammatical case, whether it is definitive or
not, and finally if there is a preposition attached to it.

Stemming is carried out in the following steps: We start by
recursively removing prefixes and suffixes then attempting to
find root for the stripped form. Our approach is to define seven
level of processing (L3, L4, L5, L6, L7, L8, Ln) that the query
may pass through during the process. The Number of
characters in a word determines its starting level (for example,
the word “���
�” will start at level five-L5). Words with less
than three letters will not be processed and will be directly
considered roots. Words with more than eight letters will start
at level n. At each level of processing we considered the
following hypotheses:

• Removing all possible prefixes and suffixes from a
word will result in a word formed of three letters that
we can consider as a root.

• Prefixes and suffixes are either one, two or three
letters.

• More than one prefix or suffix can be attached to the
word.

• Level four processing addressed infixes processing. In
addition it takes into account one letter prefix or suffix.
After that the output is sent as a three letters word to
L3.

• Words are composed of: prefix(es), a stem, and
suffix(es). [Prefix (0-6 letters)-stem (1-4 letters)-suffix
(0-6 letters)].

At each level of processing, all the possible combinations
of (prefix core suffix) are examined and for combinations

where the core is a correct Arabic word, prefix and suffix are
extracted and the cycle moves on until the word has four
letters.

Then the word enters level four processing which checks it
first for infix then for suffix or prefix (see Table II). After
deleting any infix found or any one letter suffix or prefix, the
word is sent to L3 which firstly checks if there is a vowel (و ،ا

ي،)in the word. If there is, the word is expanded to three
shapes: one with “ا “as replacement of the word vowel, the
other two shapes for “و " and “ي”. The same occurs if the word
has Hamza in it, words expanded to have all the possible
shapes of Hamza. Then the word and its expansions are
compared to list of 6,000 roots (Tim Buckwalter root list) [11],
and the most similar root is considered as root for the word.

For example processing � و$�#"!و	� is carried out in the

following steps: LN � 	�� و$�#"!و then L7 � ون!"#�$ then

L3 � !"أ
We omit the fine details here about how our stemmer works

for space considerations.
 Validation experiments have been carried out to evaluate

the performance of our root extractor. We selected 500 words
randomly and ran the root extractor on them. The result was
that 49 out of 500 words failed the test, which means that the
overall performance of our root extractor is around 90%
accurate, however this is a preliminary result with words that
will converge to 3-letter root only.

D. Query Expansion Tool

If an Arabic retrieval system restricts its search to the exact
query without looking for the relevant words or derivatives, the
results will be poor. To overcome this, expansion techniques
are used in search engines, making use of the fact that in
Arabic, many words can be derived from a single root. The
Query Expansion builds expanded queries from roots: for
example if we have the word ر$'ن)� then expanding it will
give words such as رس)��(رس، درا$� ، �(ر$' ��	، and so on.
What’s common with these words is the root of the original
word, درس. So in order to have an expansion tool to use with
queries we first need to have tables that relate each word in
Arabic with its root. To build such tables we used our corpus
and Arabic root extractor system. Also stop words in a query
should be removed by a stop word filter. The foreign names
will be kept as they are, the root extractor will tag them as
unprocessed words.

To overcome the problem of the representation of Arabic

letters (usually resulting in common errors: hamza shapes, alef,

shapes ..) we applied normalization rules when expanding the

input query , that is to match between “ , ” and “ ة ” in the end

of the word. For example if the user query holds the word

 plus �(ر$� and �(ر$� then we should search for �(ر$�

expanded words related to both. Same said about “ أ “ ، “ ا
0“ ،“ إ “ ،“ “ in the first of the word and “ ي“ ، “ ى “ in the

end of the word.

E. Query Correction and suggestion

The main function here is to correct user entered queries.

TABLE II. POSSIBLE PREFIXES, SUFFIXES AND INFIXES THAT MAY

ATTACH TO ROOTS TO FORM WORDS

Prefix Suffix Infix

 2� ، 2��، ا2�3 ، 2$ ،
، ن ، 2$ ، $�، $� ، $#
، ب ، ل ، م ، ت ، ف ، ي

و، أ

�� ، ون ، ان ، ه�	 ، آ�	 ،
 ��، وا ، ي ، ة ، ه� ، ه� ،

ت، ن ، اء

ت، و ، ي ، ا

This has the flavour of spell checking techniques using

dictionary lookup. Here, we first test the correctness of the

query by looking for matching words (regardless of their order)

in the dictionary. If there was a match, the query is considered

correct; otherwise, the dictionary looks for a list of possible

replacements. Such replacements might be based on the fact

that in Arabic, one can find words with different spelling still

pronounced in the very same way, and errors that occur as a

result of similar pronunciation or spelling.

In order to build a spelling system for search query we need

three types of corpora, single, double and triple expressions,

why? Let’s take the following example: the spelling of �<'ا�
 is ا���=� is wrong and the word ا�'>� the word , ا���=�

correct , however if spelling each alone the word �<'ا� will be

spelled either ��'ا� or maybe ا�'زن . That depends on the

ranking system, but in the case of double expressions spelling,

the system will look at the expression as one block and detect

that the best solution is �'ا�?�=�ا� � neither �=��ا�'�� ا� nor

ا���=�ا�'زن . Here, the double expressions were useful; same

is said about the triple expressions. The double and triple

expressions were built from the original newspapers pages.

 Our correction algorithm depends mainly on Levenshtein

distance which works as a metric measurement that gives the

number of steps (minimum) needed to convert string A to

string B[12]. Another important component of the correction

algorithm is the ranking system that takes different

measurements in consideration while sorting possible correct

outputs to misspelled input. The ranking system takes the

following (weighted) parameters in consideration:

1) Shape Similarity: A function that measures the

similarity in shape between two words. For example, if the

input misspelled word is �<'ا� and the spelling algorithm gave

out two possibilities: ا�'زن and ��'ا� then the shape similarity

function will detect that the word ��'ا� looks more familiar in

shape to the word �<'ا� since ط and ظ hold the same shape,

and letter ز doesn’t look the same.

 The similarity function will split the input string into

individual characters; each character is compared with

predefined groups of letters with similar shape. Table III

defines these groups.

 If the character is in the Nth group then the group code is

given to that character, till all characters are replaced by group

codes. For example, the word درس has the word code: 551, and

the word ذرس has the same code 551. The same applies to

 which results in 0 (no difference) shape ,ذزش and ذزس

differences between the above three words, however if we are

comparing �$ر)� with �Dور the function will give �$ر)�

C5518 and will give �Dور two codes either 0D518 or D5180

(the difference is in the empty letter position, which is used to

make both words equal in length). Comparing C5518 with

0D518 will give 2 shape differences and comparing C5518

with D5180 will give 4 shape differences. In this case the

function chooses the lowest difference code and the final

output will be the 2 differences. As a percentage that indicates

the relation between both inputs, the output will be:

ShapeSimilarity= numberOfRelatedLetters/lengthOfLargestInput

(1)

 The word shape similarity codes will be used to compare

words in the spelling databases (sorted by appearance

frequency) with the input “misspelled word” in order to get

the best output word that is also the closest in shape (word

with minimum difference and highest appearance frequency

that match a misspelled input).

2) Location measurement: A function based on characters

locations on the keyboard. For example, the letter ا will have

the following group: ت ل ف غ ع ة ى which are the letters

located around it in the keyboard, and so on for other letters.

This measurement will give a numerical value that expresses

the relation between two words based on their characters’

locations on keyboard. In our work the location measurement

function is limited to PC keyboards, though it can be extended

to other layouts.

 The function compares two words (misspelled and potential

correction) to measure how much both are related due their

letters locations on the keyboard. Groups of related-by-

location letters are used in the detection, the function starts by

taking word with smallest length to be the base, a letter in one

word is compared with the same location letter in the other

word: (assume the letters are X1 and Y1), if X1=Y1 then a

counter equalLetters that gives the number of equal letters is

incremented, If X1 and Y1 are related by location on the

keyboard (related is measured by being neighbor letters)

another counter relatedLetters is incremented that gives

indication about related letters. This is done for all letters, and

then the following measurement equation is applied:

 LetterLocation= (equalLetters +R*relatedLetters) /length (longest
Word) (2)

Where R value is considered to be 1, which means equal
letters and related letters have the same weight. However for

TABLE III. SHAPE SIMILARITY GROUPS AND CODES

Group Code Letters Group Code Letters

 ب ت ث ن 9 9 س ش ص ض 1 1

 ك ل A 10 ط ظ 2 2

 ج ح خ B 11 غ ع 3 3

 م C 12 ف ق 4 4
 و ؤ D 13 ر ز د ذ 5 5

 ء E 14 أ ا 0 إ 6 6

 ئ ى ي F 15 ء ئ 7 7

 No letter 0 16 ة , 8 8

future work and experiments R value can be changed to give
the related letters more or less weight than the equal letters.
 Considering �$ر)� and �$آ(ؤ the function will detect 3
equal letters and 2 related letters with measurement equation
 [3+Ρ(2)]/5 = 1.

This means that both words are fully related when it comes to

letters locations on keyboard.

3) Soundex Function: Originally, this is a “phonetic

algorithm for indexing names by sound as pronounced in

English”[13]. In our case in Arabic, the idea of the algorithm

is to look for groups of words that have the same sound

somehow and replace them by a certain code. And any two

words that have the same code are considered a match in

sound such as ن'�
�Qن، آ'�
Qآ .

 The soundex function works much like the shape similarity

function, it splits the input string into characters; each

character is compared with predefined groups of letters each

holding letters with same sound, then each letter is replaced

with its group code. (Table IV defines the groups).

Consider the words ن'�
�Qن، آ'�
Qآ . The first will give the

code: 3KM26M and the second will give: 3K6M26M , then

the function removes letters that hold the code 6 (Arabic

vowels) which gives 3KM2M for both words and thus the

words will match and are considered related by sound.

 However, if the codes for the compared inputs don’t match,

the soundex function will give the percentage of matched

letters in both.

Soundex = (matchedLetters/#ofLettersInLargestInput) (3)

The equation for ranking a possible output word from the

Levenshtein distance will be like this:

Rank (word) = A*Frequency + B*ShapeSimilarity +
C*LetterLocation + D*Soudex) (4)

Where A, B, C, D are percentages with summation of 100%
(weights). Consider A = 0.5 and B = 0.20 and C= 0.25 and D
= 0.05 in which case the equation will be:

Rank (word) = 0.5*Frequency + 0.2*ShapeSimilarity +
0.25*LetterLocation + 0.05*Soudex) (5)

 The chosen values for A, B, C and D are not necessarily the
best. They are based on experimentation and thus need more
testing to decide the best range (or values) for them. Tables V
and VI show the result after testing some queries using the
query correction

As mentioned earlier, the material reported here should be
viewed as work in progress. Our query correction algorithm is
being developed with extensive testing. Some of our early
tests are based on auto generate errors of input queries and
speed typing, then comparing correct inputs (they were
manually checked for correctness) with correction algorithm

outputs (the outputs generated due to error based inputs) to
get pass/fail percentages.

TABLE IV. SOUNDEX FUNCTION GROUPS AND CODES

Group Code Letters Group Code Letters

 خ D 13 س ص ث 1 1

 د E 14 ط ت 2 2
 ر F 15 ك ق 3 3

 ب G 16 أ ئ ء 4 4

 ع H 17 ز ذ 5 5

 غ I 18 ا و ي 6 6

 ف J 19 ء ئ 7 7

 ل K 20 ة , 8 8

 م L 21 ظ ض 9 9
10 A 0 22 أ M ن

11 B 23 ج N ,
12 C 24 ح O إ

TABLE V. SINGLE WORD QUERY TESTING

Input Output(s)

1 �?�	" �?�	Z ، �?[" ، ���	" ،�?�\

2 ,)�
�(ى ا��
�(ب ، ا��
ا���[(ة، ا��
(دة ، ا��

 ا�_��'ر�� ا�^��'ز � 3
وا�`	�
��، وا�`'ا �� وا�`	و �� 4

5 �������� ا���'���� ، ا�������، ا���)���ا���

ا�'�	ق، ا�'�	ء ، ا��b	ل ، ا��'�	ل ا�a'�	ل 6

ا���	د��، ا���	د�� ، ا���	د�� ، ا���	$�� ا���	$��� 7

�?	و�
'ن 8��?	و 'ن و� و

TABLE VI. DOUBLE AND TRIPLE EXPRESSIONS QUERY TESTING

Input Output(s)

�� ا���Q'�	ت 1
�3 ��
ا��?Q'�	ت 3`

2 cD\ق ا��ا��fف اb"�، ا��eق اbو$d ا�

3 ��gZ\ت ا	��Qا� ��g
Zbت ا	�Qا�
^�2��3	�hت "	 4 ��	��	ت ه	���3

5 ���� ا����Q ا���_	ر	��" ���� ا�����Q ا��_	ر	�j

6 ���hD\?2 ا�	ا�_ ��l=را ���h$mت ا	?�	ا�_ �f=را

 �� ا��'اآ� وا�^a	ر �� ا�'�'اآ� ا�^a	ر 7

 ا��e	رآ'ن �� ا����3n ا��e	رآ'ت �� ا���و��3 8

 To perform such tests we selected 300 random queries

divided into three groups of 100 queries each, from single

words database, double expressions database and triple

expression database. For each group, first a speed typing error

based file was generated, which is a manual rewriting of each

word in each group blindly (without looking at the keyboard)

and the second is an auto generated error file, the file is

created by replacing one letter in every word of the input file

each time in a random position, three types of error files are

generated: one error, two errors and three errors per word.

Table VII gives an indication about the early tests and the pass

percentages. The tests are made with A, B, C, D values (0.5,

0.20, 0.25, and 0.05), respectively.

 Future work on spelling will include tests based on OCR

output to test the efficiency of the algorithm in working with

Arabic OCR and tests that measure the effect of each ranking

variable alone. Also increasing words in the correction

databases will be considered. We will also deal with ranking

variables weights. Expanded tests that run over all possible

values for weights of the ranking variables will be performed

to decide which are the best values to use.

TABLE VII. EARLY TESTS ON QUERY CORRECTION ALGORITHM

Test Type Query Type Pass Percentagea

1 Speed Writing Single 75%

Double 85%

Triple 84%

2 Auto generated errors

- One Error

- One Error

- Two Errors

- Three Errors

Single 88%

Double 89%

Double 81%

Double 81%

a. These percentages are a subject of change by future tests and improvements.

V. AUTOMATIC ARABIC DOCUMENT

CATEGORIZATION

The idea here is to map a document into one of a given set
of categories based on text properties. The challenge is to
correctly predict the category of the document even when the
categories are related. We have done major experimentation on
categorization algorithms that take into account the nature of
Arabic and build on successes in other languages. Our
experiments are based on statistical data, using sets of
predefined words and their frequencies, sets that are defined as
major categories and refined subcategories. These sets or
words databases are obtained from different Arabic web based
resources that are already categorized (such as sport,
economics, medicine, political news websites) and from Arabic
Wikipedia with manual defining, grouping and categorizing
pages. Refer to Table VIII for major categories and
subcategories that we are experimenting with.

Experiments that were done and others yet to be done vary
from testing major categories and subcategories to testing the
differences between related subcategories (such as the relation
and differences between ���� 	��� �$)
�	ء، هo�� ،��p	=آ�� �$)
ه or
between ء	�jأ ،��)�q ،�]qو r�), also experiments vary
between tests made using stemming, double and triple
predefined and categorized expressions, window based
categorizing (categorizing a limited number of words in a text
and apply the results to the whole text) and other tests that our
future work will explain in details. Our future work will
explain how category based databases where built, frequencies
of words in each, common words between related and
nonrelated categories; we will describe each experiment that
has been made and the results achieved. For space
considerations; we are not able to give the details here.

VI. CONCLUSION

We presented the challenges that the Arabic language
introduces for retrieving Web information and some Arabic
NLP tools and methods that might help removing the barrier
resulting from the sophisticated nature of Arabic.
 Our work was aimed to develop techniques for returning
good search results by helping search engines better understand
users’ queries and adding features to what currently exists in
search engines. This paper reported on our work on designing
text mining and query pre-processing tools that are able to
efficiently process and search large quantities of Arabic web
data. We employed a statistical/Corpus-based approach, and
constructed databases that contain Arabic words from
newspapers with their frequencies and used that as basis to
create well structured search aid tools that are able to handle

TABLE VIII. EARLY TESTS ON QUERY CORRECTION ALGORITHM

Major Category Subcategories

�[�أو���g	د، ا�� و$g	s	ت ر، 3
t ، آ�ة $�Q ، آ�ة s(م ر

�$)
�(�� و�?�	ر��، آ��=	��p ، أ j ��l	$'ب و �gD	ت، ���	 ���� ه

�	ء، أ�j	ء، آ���	ء، ر�]�	ت Qu'مo��

r� ��)�q ،�]qو r�

	ء، D?� و أدب �
'نv و w`�$'� ،	�
���ح و $�

د�	 	ت أ"�ى، ���[��، إ$hم د�	 	ت

�� ------------- 3	ر
�$	�$ - ------------

 ------------- إدارة أ�u	ل و أ�'ال
 ------------- �']� و ��أة

Arabic content and which are capable of being integrated into
existing web search engines and document processing systems.
 The reader may like to visit our website
(http://wojoodapi.appspot.com/) which includes information
about the tools we are working on (new tools also). One can
also find some testing applications, worth mentioning here that
we are working on a new version of the website that will show
in detail our work and provide clear testing tools.

REFERENCES

[1] Search Engine Marketing and Internet Searching, Pandia, Search Engine

News, “The Size of the World Wide Web”, February 2007,
http://www.pandia.com/sew/383-web- size.html.

[2] Thomas Boutell, “WWW FAQS: How many websites are there?”
February 2007. [Online]. Available :
http://www.boutell.com/newfaq/misc/sizeofweb.html.

[3] Grossan, “Search Engines, What they Are, How They Work, and
Practical Suggestions for getting the Most out of them”, [Online].
Available : http://www.webreference.com/content/search/, February 21,
1997.

[4] Arasu, Cho, Garcia-Molina Paepcke, Raghavan, “Searching the Web”,
ACM Transactions on Internet Technology, Vol. 1, No 1, pp. 2-43, 2001.

[5] Bies, Kulick, Maamouri, “Diacritization: A Challenge to Arabic
Treebank Annotation and Parsing”, University of Pennsylvania, USA. in
proceedings of the Arabic NLP/MT Conference, The British Computer
Society Natural Language Translation Specialist Group, 2006, pp.35-47.

[6] Adnan Yahya: "On the Complexity of the Initial Stages of Arabic Text
Processing"; First Great Lakes Computer Science conference;
Kalamazoo, Michigan, U.S.A.; 18--20 October 1989.

[7] wikipedia Stop words, Wikipedia Website.[Online]. Available:
http://en.wikipedia.org/wiki/Stop_words/ ,[Nov, 20, 2009].

[8] Stop words, University of Glasgow, Department of Computing Science,
information retrieval resources.[Online].
http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words/,
[Oct, 10, 2007].

[9] Wikipedia,Stop words, Arabic Stop Words Project.[Online].Available:
http://sourceforge.net/projects/arabicstopwords/, [Nov,20,2009].

[10] Kareem Darwish, “Building a Shallow Arabic Morphological Analyzer
in One Day”, ECE Department, University of Maryland.
[Online].Available: http://www.cs.umd.edu/Library/TRs/CS-TR-
4326/CS-TR-4326.pdf

[11] Tim Buckwalter, “Arabic root list”,1997.[Online].Available:
http://www.angelfire.com/tx4/lisan/roots1.htm . [Mar,4.2011].

[12] Wikipedia, Levenshtein Distance, Wikipedia
Website.[Online].Available:
http://en.wikipedia.org/wiki/Levenshtein_distance/,[Mar, 5,2011].

[13] Wikipedia, Soundex, Wikipedia Website.[Online].Available:
http://en.wikipedia.org/wiki/Soundex, ,[Mar,5,2011].

