
4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

Arabic Text Correction Using Dynamic Categorized Dictionaries
A Statistical Approach

Adnan H. Yahya and Ali Y. Salhi

Department of Computer Systems Engineering, Birzeit University, Birzeit, Palestine.

yahya@birzeit.edu, asalhi@birzeit.edu

Abstract— This paper describes a technique for spelling and

correcting Arabic text that provides different variables that

can be controlled to give customized results based on the

properties of the processed text. The proposed technique

depends on dynamic dictionaries controlled and customized

based on the input text categorization. In the research

reported here we employ a statistical/corpus-based

approach with data obtained from the Arabic Wikipedia

and local Palestinian newspapers. Based on corpus statistics

we constructed databases of words and their frequencies as

single, double and triple expressions and used that as the

infrastructure for our spelling and text correction

technique. Our spelling technique builds on earlier

work[7], but using new spelling variables and dynamic

dictionaries based on categorized texts. We briefly report on

the results of preliminary testing and analysis. While the

results reported here are promising, they must be viewed as

work in progress, still in need of more testing, refining,

integration and deployment in real life settings.

Keywords — Natural Language Processing; Arabic

Wikipedia; Arabic Text Correction; Categorized Corpus;

Text Categorization

I. INTRODUCTION

The Arabic online content has increased from 0.1% of
the worldwide content (40 million of 40 billion online
pages) in 2007 to 0.3% (156 million of 47 billion pages)
in 2010, an increase of 300% in three years and was
expected to reach 330 million pages by the start of
2012[1]. This means that there is a global awareness
among Arab writers and users about the importance of
creating and publishing Arabic web content. Also this can
be noticed through many online initiatives such as (on
October 23, 2010) the “Digitally Open: Innovation and
Open Access Forum” hosted by , ictQATAR and Creative
Commons[2]. The forum addresses how innovation can
push and increase sharing and openness of Arabic content.
Earlier, Mohammed bin Rashid Al Maktoum Foundation
in Dubai started the Sawaed program focusing on
developing the capabilities of talented Arab entrepreneurs
by providing non-refundable grants with a major recent
focus on the development of online Arabic content[3].
Also, in 2007 the Information and Communication
Technology Division (ICTD) at UN-ESCWA launched a
project on “Promotion of the Digital Arabic Content
Industry through Incubation”[4]. With this increase in
Arabic content awareness and creation, there is a great
need for tools to overcome the many challenges in
processing and retrieving Arabic web content. In this
paper we describe a technique for spelling and correcting
Arabic text. The proposed technique provides different

variables that can be controlled to give customized results
based on the category of the text being processed. The
technique depends on dynamic dictionaries that can be
controlled and customized based on the input text
categorization. We employ a statistical/Corpus-based
approach built on data obtained from the Arabic
Wikipedia and local Palestinian newspaper. Based on
corpus statistics we constructed databases of words and
their frequencies as single, double and triple expressions
and used that as the infrastructure for our spelling and text
correction technique.

The idea of using personalized dictionaries for spell
checking to account for the peculiarities of individual
writing styles and word usage is not new. However,
usually the personalized dictionary adds user’s words to
the base dictionary to avoid tagging correct user words as
errors. Our dictionary here is nontraditional in the sense
that it has double and triple expressions as well as single
words, plus we associate frequencies with each expression
to reflect its usage and utilize this frequency to rank the
candidate corrections. We further extend the idea here to
allow the user to work with different dictionaries based on
the topic he/she is writing on: that is, the used dictionary
need not always include the base dictionary, but the latter
is replaced by a specialized one that is topic-specific.
Since our spellchecking offers correction suggestions as
well, we also force the suggestion order to take into
account the word usage in that category. The approach
will use a set of weights to account for the various sources
of spelling errors in Arabic to rank the candidate
corrections. So, it theoretically can adapt to user behavior
in terms of the dominant source of errors in his/her writing
which can be used to determine the choice of the weighing
parameters in the ranking equation.

Taking a look at earlier and related work, one can see
that there are few available Arabic spell checkers that can
be split into commercial such as Microsoft spellchecker
used in Microsoft products and free such as Ayaspell
which is used in OpenOffice.org (an open source
multilingual office suite)[5]. We did a quick comparison
between Ayaspell, Microsoft spell checkers and our
approach, which is discussed in section V.

It might be that the simplest technique to create a
spellchecker is by ranking a set of possible results based
on the distance between them and the current investigated
word, using a technique such as Levenshtein distance
which works as a metric that gives the minimum number
of steps needed to convert one string to another [6,7,8].
Another technique that can be used is Agrep which is
based on the minimum editing distance between words by
insertions, deletions and substitutions[6,9]. Yet another

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

technique used is based on Hamming distance to
overcome substitution and transposition spelling errors[9].
Hamming distance approach calculates the number of
positions at which the corresponding symbols are
different[10]. We adopt Levenshtein distance in our
spelling algorithm, but with another method that
calculates the similarity between two strings based on the
number of adjacent character pairs which are contained in
the two strings. (Discussed in Section III).

One can talk about two types of error processing:

- Spelling errors detection: It detects which words are
possibly wrong in a text. One can simply compare the
text under processing with a dictionary of Arabic
words, and extract all words with no possible match
in the dictionary.

- Spelling errors correction: This can be classified into
context dependent or context independent. If the
spelling is based on information available from the
processed text then it’s a context dependent, else, if
the method can correct individual words based on
dictionaries without reference to other text parts, then
it is context independent. There are many techniques
used in correction based on editing distance and
others based on ranking techniques such as those
introduced in[7,9] where parameters such as
soundex, shape similarity, keyboard keys locations
and statistical frequency analysis are used to rank
alternative spellings.

 Our suggested approach is a mix between context
dependent (using categorization) and independent (using
customized dictionaries) and has three components:

- Misspelled words detection techniques: this depends
on an Arabic corpus (dictionary). If a word in an
Arabic input text is not found in the dictionary, then it
is considered a misspelled word. It may also be
considered misspelled if it is unlikely to occur in the
given context (say in a given sequence of words).

- Dynamic dictionaries that can be controlled and
customized based on the input text categorization; we
built resources for different categories, something we
will discuss in section II. The categorization can be
controlled either manually or automatically through a
categorization algorithm.

- Ranking metric based on a modified version of
Levenshtein distance with a text similarity
algorithm[11] which we will discuss in section III.
There, we employ ranking parameters such as
soundex, shape similarity, keyboard keys location and
statistical frequency and string positioning.

The rest of the paper is organized as follows: We
address building dynamic categorized dictionaries based
on Arabic Wikipedia in section II. The dictionaries that
will be adopted in our spelling algorithm and the different
ranking and spelling variables used are discussed in
section III. The algorithm also depends on a categorization
technique that gives promising initial results and is
highlighted in section IV. In section V the spelling
algorithm is detailed with some initial testing results and
complexity analysis. Then we give our conclusions and
point to some future work. While the results reported here
are promising, they must be viewed as work in progress,
still in need of further testing, refining, integration and
deployment in real life settings.

II. SPELLING DICTIONARIES AND DATA COLLECTION

For the spelling algorithm we need to build dictionaries
to be used as the base for the checking and analyzing
process. The algorithm will depend on several sets of
dictionaries.

A. General Corpus

 The first set depends on a statistical/Corpus approach
based on contemporary data we obtained from various
sources. The corpus has around 75 million words of
written Arabic covering different topics (for more about
this corpus please check[7]). Data statistics on our corpus
are shown in Table I, the corpus was processed to output
single, double and triple expressions. So we will have
three different general dictionaries each containing
words/expressions sets with frequency of appearance.

B. Wikipedia Categorization

 The second is a categorized set of data that depends
mainly on Wikipedia. The data was collected using an
automated process of connecting related articles together
based on a manual categorization done by the Wikipedia
editors (each article in the Wikipedia is tagged by
different keywords/categories) and a list of collected
Arabic Wikipedia topics obtained from the outputs of the
Arabic online content indications project from the
computer research institute in King Abdul-Aziz City for
Science and Technology [12]. The list provides data rows
of the form <title, content>. The number of
documents/articles in this list is 96,128, which means the
number of titles will be the same. Using these titles we can
create sets of related articles and to do so we need articles
to be tagged by keywords or categories and that is already
done by Wikipedia editors.

Wikipedia editors use manual tagging/categorization.
That is, each editor can suggest categories or keywords to
tag articles, which means each article can be tagged under
different categories. The overlapping categories are not
fixed and one can find categories such as ������ ء	
، رؤ

رؤ
	ء ا����� ا������ ا���������، رؤ
	ء وزراء ������ those
categories can be merged in one category such as د	ة �
��������� or in a more general category which is ������ ر	أ��
or a still the more general category �
	�
. The categories
that can be found in Wikipedia are too specific on one
hand and on another can be repeated using different terms
as seen in the above example. Figure 1 shows an article
talking about س� that has 11 categories and some of the ا��
categories are really important such as , �� !"ن ا�#�� ا��%
آ�+	*�� %�ن ,&�ا() '�	�� &! �� , �
��% ��%-
�ن ذات أه/�� ,أ%	آ� إ%
 .and so on د���4 ��3��%

TABLE I.

DATA STATISTICS

Description Statistics

Processed Words 75,132,120

Arabic Words (no repeat) 962,879

Arabic Words (F > 1) a 519,827

Multi words expression (no repeat) 1,843,274

Triple words expression (no repeat) 1,414,010

Number of documents (PDFs , HTML) Around 80,000

Average letters per word 5.4 letter

The most frequent word 1,203,663 (5�)
Number of letters for the longest word 15 (�����	�"%ا�67!و)

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

Figure 1: Categories for the title/article "س�"ا��

 Based on Wikipedia categories we can link articles
with other articles based on the shared categories between
them, the more shared categories the more the articles are
connected and thus related. Also this can mean that there
is a possible relation between categories in different
articles if the categories appear jointly in different
articles. For example if text A is categorized under, say,
، 7�%	7�*	 and text B is categorized under %�7	*�7	 , ��ا*�� *���9
 then we can conclude that those three categories �	�� :!آ��
are related. However, if we go deep in this relation
analysis we may end up connecting all categories in the
Wikipedia (which is not good) so one should be wise in
selecting limitations in relation depth and maybe interfere
manually to have control over how deep the
categories/articles relation goes. We developed an
approach (we named related categories approach) that
starts with a predefined category (starting point), say ء	4;��
, it parses the articles to filter the ones with ء	4;�� as one of
their categories, then for each found article, the categories
found in that article are added to a queue, thus if an article
has ء	,��;4 	*�7	7�% and ��	� as categories then both 	7�*	7�%
and ��	� are added to the queue to be parsed in the same
way as ��;4	ء . When parsing all the articles that have ء	4;��
as one of its categories, we move to the next category in
the queue which is for example 7�*	7�%	 , same is done here
as in ء	4;��, each category may bring new categories to the
queue. Each seen category will hold a variable that
indicates the number of articles in that category. This
variable reflects the importance of a category so if 	7�*	7�%
was found in a large number of articles then it will be
reflected in its importance (the articles may have ء	4;�� as
one of their categories and may not, even though the
starting point is ء	4;��) and so on for all other categories.
The question that arises here is when to stop? A variable
N is introduced that control how many articles to process,
for example we set N to 50, which means when the
number of processed articles reaches 50 the operation
stops (starting from articles that hold ء	4;�� as a category),
and the categories stored in the queue (ranked based on
their importance, which is the number of articles
processed that include a certain category) are considered
for manual check. A manual phase is adopted here to
make sure that the categories in the queue (which is added
due the parsing of the 50 articles) are truly related and do
not cause major problems in categorization. Table II
shows some categories with their top 10 related
categories; let’s take the category ء	4;�� for example. We
parse all the articles in all the related categories for ء	4;��
(extracting their Arabic content), that is to parse the
articles (from the 96,128 list of articles) that includes at

least one of the categories related to ء	4;��, in the end we
will have categorized corpus for ء	4;�� .
 Increasing N will increase the categories and thus
increase the number of articles processed, but will
increase the need for manual checking of the added
categories in order to maintain control over the quality and
value of the corpus.

TABLE II.
SOME CATEGORIES WITH THEIR TOP 10 RELATED CATEGORIES, USING

THE RELATED CATEGORIES APPROACH

Selected word to find related categories to: ء�����
 &�) ا��7ن ��;4	ء

 أ&�اد ا�7) *����
 =�ء (�ار4>

?��*<!4	ت ��;4	 أ%@�� آ�*��
 اC9	Bت إ�A7!و*�	ت

Selected word to find related categories to: ��

D� �3)

 %�</� ا��3C ا�+	�/�� &�) اEدو�4

 أ%!اض ورا'�� أ%!اض
 %#	دات :��3��C% �4	ت ����

��� &�) ا��را'� (�

Selected word to find related categories to: ب
��� ���

ا�3	
�ب &�) ��
�:

��*��C& ت	7�H �I%!
 إ*�9 J*!A��D ا���	*	ت
 %+��%	K��39 ��*��C& ��9 ر4	=5

 أ%� �7�H ا�3	
�ب ا�/+��%	ت أ%�
Selected word to find related categories to: د��

 ��L إ
-%5 د�4

�	 ��L &�	داتM ت	*	د4

-مOن ا	د أرآ	6P

�� *�Cص د���4��H��*آ�

��%-
 ��ا?R إ
-%�� H!4+� إ

 Using this technique we built a Wikipedia based
categorized corpus. Table III gives statistics about the
predefined categories that we adopted; of course the data
in this corpus is subject to change due continuing data
processing. Those categories will be used in experiments
related to spelling by first categorizing the text being
spellchecked in order to give a higher rank to possible
results within the text category. For example, the
following sentence ل	ا ر4Tه�4�I% if it comes in a sport text
then �4�I% most likely to be ��ر4% but if it comes in a
financial text then �4�I% is most likely to be �4�P.
 So far, we defined 26 categories as seen in Table III.
Categories: م�أو�/��	د، U�9، آ!ة
��، آ!ة � ,
�	رات
�	ق can all
be joined under �=	4ر category. This will give more
dynamic options of using a major category �=	4ر if the
text is about �=	4ر or a subcategory م� for example if آ!ة �
the text is about �=	4ر in general and م� .in particular آ!ة �
 Working with a more specific category like م� will آ!ة �
help in decreasing the dictionary size and will improve
access time (less processing and less queue size)
compared with more general category like �=	4ر.

 Using the “related categories” approach we can
create new categories by starting from the desired
category. For example if a user decides that there is a
need for the category ا����ر then adopting the same steps
we did for ء	4;�� will output a new corpus specialized in
 .from the Wikipedia articles ا����ر

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

TABLE III.
WIKIPEDIA CATEGORIES CURRENT STATISTICS

Category # of

unique

words

of all

words

processed

Average

Frequency

Average

length of

words

 5.94 9.45 54,674 11,035 آ!ة ��م

��
 5.75 10.43 44,479 8,155 آ!ة

U�9 9,419 65,227 12.07 6.08

�	�	ت
�	رات 5.78 7.76 24,477 5,837

 6.03 10.84 65,445 12,300 أو�/��	د

 6.15 7.55 52,276 14,405 إ�CA	د

5%-
 5.80 8.41 65,210 29,219 إ

53��% 15,329 19,630 6.57 6.03

 6.00 6.94 27,771 7,335 آ6! 	?�� وإ�A7!و*��

��7�*	7�% 8,216 28,796 6.27 5.98

و 7�H	ت آ/��9! 13,945 62,020 7.63 6.06

 6.12 7.26 45,025 11,717 آ�/�	ء

 5.85 5.88 16,217 5,204 ��;4	ء

 6.03 6.82 26,746 6,928 ر4	=�	ت

 5.90 5.27 25,406 9,416 أ:�	ء

 X D� 13,720 53,923 7.44 5.67!ي

����) 14,230 45,322 4.62 6.16

Y4� 5.96 7.95 68,985 20,217 9	ر4> :

(4� 5.90 7.21 83,103 22,890 9	ر4> �

 H 15,666 35,166 4.72 5.52+! وأدب

5.74 5.63 38,196 12,998 %�
��] و�Z	ء

��/	 و%�!ح 5.82 5.41 41,662 14,252

 5.88 5.14 25,916 10,393 د4	*	ت أ�!ى

�
	�
 11,2367 26,605 8.23 5.81

 5.66 4.32 14,923 7,318 %�=] و%!أة

��	P"!ا 10,157 31,155 5.55 6.07

III. SPELLING VARAIBLES

Our Spelling algorithm depends on different variables,

such as Levenshtein distance and similarity calculations

to decide on the best possible matches for a certain word,

then other variables such as soundex, keyboard location,

shape similarity and frequency are considered to rank the

candidate matches in the most efficient way. The success

measure is to have the user intended word the highest

ranked suggestion. Of course those variables will be used

to rank candidate matches whether they are single, double

or triple expressions (based on single, double and triple

dictionaries).

A. V1: Levenshtein distance (Lev)

Levenshtein distance works as a metric for the

minimum number of steps needed to convert string A to

string B[8], A and B could be single, double or triple

expressions. For example if we have A: �^ا�� and B: ا����
then Levenshtein distance between A and B will be 1,

also C: ا��زن has a difference of 1 from A, plus the word

D: !9ا�� has 2 differences. Word D will have less ranking

(based on Levenshtein distance alone) since it differs by

two letters. From this last point the problem of swapping

errors shows up in the normal Levenshtein distance

algorithm, for example let’s take A: ا���ن and B: ا����
then the words will have two units of distance not one.

However if the user meant ا���� the system will end up

ranking the latter in lower positions, but it will rank C:

 in a higher position due to one difference. So a ا���ق

modification by mapping the two letter swap differences

to one unit of distanced is needed.

Levenshtein distance function will output the result

based on Equation (1)

Lev(A,B)= 1 – [#ofDiffrenentLetteres/min(Length A, Length B)] (1)

For Example assume A is Jا��� and B is Y@ا��� , then the
number of different letters are 2 (the last two letters in B)
thus the equation will become 1-[2/min(5,6)] which
equals to 0.6.

B. V2: Letter Pair Similarity (LPS)

The letter pair similarity function finds out how many

adjacent character pairs are contained in two strings A

and B. It is most useful when we are spelling based on

double and triple expressions, Equation (2) shows how

the letter pair similarity is calculated[11].

 LPS (A, B) = (2*| pairs (A) ∩ pairs (B)|) / (|pairs (A)| + |pairs (B)|) (2)

 For example let us take the following strings,

A: 5 !+ا���� ا� and B: 5 !+ا���� ا� , maybe the user really

meant B not A. Using Levenshtein distance will give 10

differences between the two strings which will discard

(very low ranking) expression B from the possible

matches. However the letter pair similarity function will

give a 100% match between both sentences based on the

following calculations:

String A 5 !+ا���� ا� will be divided into pairs of letters

(after splitting the string based on space character) : P1{
ا�+! and String B 5 { 5 ، رب، &!، �a، ال ، ،��، وط ، �� ، ال

، ��، ال، 5 ، رب، &! ، �a، ال }will be divided into P2 ا����
��، وط } , according to (2) the similarity will be: 18/(9+9)

= 1.00 which will rank the sentence high in the possible

match list.

C. V3: Shape Similarity

A function which measures the similarity in shape
between two strings A and B. For example, if A is �^ا��
and the spelling algorithm possible matches has two
possibilities B ا���� and C ا��زن . Both are correct
alternatives. However the shape similarity function will
detect that B looks closer in shape to A than C since ط
and ظ have almost the same shape, and letter ز doesn’t
look as close.

The algorithm depends on dividing the alphabet into
sets of letters with related shapes then comparing strings
A and B to calculate the number of related letters. If letter
i in String A and letter i in String B are in the same shape
group then they are considered related, Equation (3)
shows how to calculate the shape similarity. For more
details please check [7].

 ShapeSimilarity(A, B) = #OfRelatedLetters/ max(length A, length B) (3)

D. V4: Location Parameter

A function that takes into consideration the locations
of letters on the keyboard. It acts similar to the shape
similarity function; however the related letter groups are
based on adjacency on the keyboard. For example, the
letter ا will have the following related group: { ت ل ف غ ع ة
ـ i ‘M أ O E إ ى } which are the letters located around it in
the keyboard (with Shift Key on and off), this also can be
extended to restore Arabic text entered in Latin due to

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

failure to switch keyboard entry language (currently PC
keyboards are adopted, though it can be extended to other
layouts), for example we can extend the related letters
group for ا to include {h, H}, which are the letters in
Latin that shows up due to failure to switch keyboard
entry language.

The function defines two variables 1) equalLetters if
the two letters (Ai and Bi) are equal and 2) relatedLetters
if the two letters are related on the keyboard based on
related letters map. Equation (4) shows how to calculate
the location similarity. For more details please check [7].

LetterLocation(A,B) = (#equalLetters + #relatedLetters]) / max(length A,
length B) (4)

E. V5: Soundex Function

Originally, this is a “phonetic algorithm for indexing
words by sound as pronounced in English”[13]. In our
case indexing strings by sound as pronounced in Arabic,
it’s similar to the other similarity functions with “related
group” letters. For example the letter س has the following
group that sounds like it { ث، ص ،س } which are the letters
with the same sound at least in some common
pronunciations. Equation (5) shows how to calculate the
shape similarity. For more details please check [7].

Soundex (A, B) = (#relatedLetters / max (length A, length B)) (5)

F. V6: String Ranking and Frequency (R&F)

 Another variable to consider in ranking the results of a
possible match list is the candidate string rank (we say
string because this is applied to single words, double and
triple expressions) and frequency variables. String ranking
refers to the position of a string in a dictionary according
to frequency, and the frequency refers to the number of
appearances of a string over the sum of all frequencies in
the candidates match list. For example, in a list
(dictionary) consisting of six strings and their dictionary
frequencies { A:100 , B:75 , C:75 , D:30 , E:28 , F:10}, B
for example has a rank 2 out of 5 not 6 because B and C
have a ranking of 2 repeated, so the ranking value will be
(2/5), the frequency of appearance of B is 75 and the
string percentage frequency will equal
75/(100+75+75+30+28+10). Equation (6) shows how the
string ranking and frequency variable is calculated.

R&F(s) = [Rank(s)/TotalRank]*[Freq(s)/TotalDicFreq] (6)

 In section V we will explain how the various variables
are combined to build the spelling algorithm.

IV. CATEGORIZING METHOD

 As we discussed in section II, categorized dictionaries

are built to be used in our spelling technique. The

categorizing step is done before the spelling to detect the

category of an input text and provide the best categorized

dictionary to be used by the spelling algorithm. The

categorization process itself may be manual; the user may

define the category he/she is using and the system will

adopt this choice or it may be an automated process.

Many approaches to categorizing text exist in the

literature, and generally any of them can be used for the

input text categorizing process. Here, we will

demonstrate some of our work on building categorizing

systems. Please note that the work addressed in this

section is still in progress.

A. Percentage and Difference Categorization

Algorithm

The algorithm focuses on the relation between ratios in
the input text words and the corresponding ratios in the
reference texts (Wikipedia categories) to decide to which
category to assign each word in the input text. This means
it will calculate the percentage of each word in the input
(words frequency/total words) and compare it with the
word percentage in each category (if it exists), then find
the difference between the two values and assigns the
word to the category with smallest difference. For
example if a word A has frequency 7 in the input text,
and the size of the text is 300 words, then the percentage
of A in the input table is 7/300 = 0.023333 then A
percentage value is calculated in each categorized
dictionary (if it exists), for example A has a frequency of
500 in a dictionary X that has a total frequency (of all
words) summation of 10,000, then A in X has 500/10000
= 0.05 , then the relation between A in X and A in the
input text will be the absolute value of (0.023333 – 0.05)
which is 0.026667, this is done for all dictionaries and the
(category) dictionary with minimum difference is assigned
to A.

This process is done for all words, after removing stop
words from input text (Stop words is a list of very
common words which are filtered prior to/after processing
of natural language data [14]) using stop words filtration
method discussed in [7].

The input word and its best match category are stored
in a table as <Word , Category>, then the algorithm will
detect the most frequent category and consider it as the
best match for the current input text. Of course in practice
the chosen category will be shown to the user to make
sure he/she does agree, the possibility to change the
category is always available to the user.

B. Testing the Percentage and Difference

Categorization Algorithm

The testing was done on a sample of 380 files, which

were distributed among different categories. Table IV

shows the categories which were considered in the test,

with files numbers and sources (web sites).

 The Results of the test is shown in Table V, which

shows a percentage of the successful hits.

 Taking a look at earlier studies, we can make a quick

judgment about how good our results are. Based on [15]

experiments which evaluated the performance of two

popular classification algorithms (SVM and C5.0) on

categorizing Arabic text using seven Arabic corpora, the

average results was 68.65% for SVM and 78.42% for

C5.0. The study using Naïve Bayes algorithm reported

68.78% accuracy [16] and another study that uses kNN

algorithm reported 96% accuracy results based on six

categories which are : �
	�
- (D� ،�3 -(�3 ،ر4	=�، ا�CA	د،
*�	ت–زرا&� ،
!�	ن [17].

 It is difficult to compare our results with others

because different data sets and number of categories are

used in different algorithms and tests, however according

to some earlier work our results are promising.

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

TABLE IV
TEST SAMPLE SOURCES

Category # of files Web Sites

 http://www.mbc.net 40 آ!ة ��م

http://www.yallakora.com/

http://www.slalah.com

http://www.kooora.com/

http://www.syrian-soccer.com

��
 http://www.as7apcool.com 40 آ!ة

http://www.kooora.com/

http://www.yallakora.com/

�	�	ت 40 http://www.bbc.co.uk

http://www.yallakora.com/

http://www.newstin.ae/ar/formula-

one/

� آ6! 	?�� �ه�
 وإ�A7!و*��

40 http://olom.info/

http://www.alhandasa.net

http://aafaq.4t.com/components.htm

 /http://www.physicsacademy.org 40 ��;4	ء

http://hazemsakeek.com/

http://phys.olom.info/

http://www.schoolarabia.net

http://www.marefa.org

 http://tamernb.jeeran.com 40 آ�/�	ء

http://www.ksa-teachers.com/

http://www.schoolarabia.neta7ya2

http://www1.kisr.edu.kw/

http://www.bytocom.com/

 /http://www.malomat.net 40 أ:�	ء

http://www.al3ez.net/

http://www.dafatir.com/

 /http://p48.50webs.com 40 آ�%���9! و7�H	ت

http://www.boosla.com/

http://www.arabhardwa

 http://www.sehha.com 40 ا�CA	د

http://www.asnanak.net

http://www.csmc.edu/6757.html

�
	�
 20 http://www.maannews.net

TABLE V

TEST RESULTS

Category #Files Percentage &

Difference Based

Algorithm results

(number of Files)

Success

Percentage

 %95 38 40 آ!ة ��م 1

2 ��
 %95 38 40 آ!ة

�	�	ت 3 92.5% 37 40

� آ6! 	?�� 4� %82.5 33 40 ه�

 %85 34 40 ��;4	ء 5

 %85 34 40 آ�/�	ء 6

 %80 32 40 ا:�	ء 7

 %77.5 31 40 آ/���9! و 7�H	ت 8

 %90 36 40 ا�CA	د 9

10 �
	�
 20 16 80%

 Average 86.58%

V. SPELLING ALGORITHM

The spelling algorithm is based on the spelling
variables we addressed in section III and it is an extension
of earlier work we did[7] with new variables and methods.

A. The Suggested Spelling Approach

 The algorithm starts by detecting the category of the

current input text as just outlined to decide on which

dictionary set to use. The dictionaries, including the

general one (which can be used if the categorizing phase

is skipped), hold single, double and triple expressions.

Why have multiple expressions? Let’s take the following

example: the spelling of �^ا�"! 5 ا�� , the word �^ا�� is

wrong and the word 5 !"ا� is correct , however if spelling

each alone the word �^ا�� will be spelled either ا���� or

maybe ا��زن . That depends on the ranking system, but in

the case of double expressions spelling, the system will

look at the expression as one block and detect that the

best solution is 5 !+ا���� ا� neither 5 !"ا���� ا� nor ا��زن
 Here, the double expressions were useful; same is .ا�"! 5

said about the triple expressions.
 The spelling algorithm takes into considerations the
three tables (single, double and triple expressions) when
spellchecking a text. It follows the user input while typing,
for example when the user types a word (w) in a sentence,
the spelling algorithm checks the current {w || w, w -1 || ,
w, w-1, w -2} and then { w || w , w+1|| w, w+1, w+2}
when possible, that is a window of one, two , or three
words in both direction (to check if the error is better
corrected using double or triple expressions first). For
example, assume that the user is typing the following
sentence : “
T aه!و�A9	�o اE%�	ر &�]
�ا:K ا��A/ا� p� Eا “ if
the system doesn’t take a window of three words (triple
expression checking) then two words (double expression
checking) before checking single words errors, it might
correct the word !هTا� to 6!ا�� and keep the word a
�A/ا� as
is, however if the user still writing and reaches ه!اT� , the
system will check { K:ا�
ا�Tه!&�] } if no possible match
it will check {
 K:ه!�اTا� } if no possible match it then
checks {!هTا�} and may correct it to !6ا��. However when
the user continues writing the word p� Eا, the system
again will check { ا�p� Eه! اT } and assume it is corrected
to p� Eا��3! ا , then the user continues writing a
�A/ا� then
the system will check { a
�A/ا� p� Eه! اTا� } and correct
the whole sentence to o
�A/ا� p� Eا��3! ا. If the system
couldn’t find a match with triple expressions; it goes back
to the double expressions match. In all cases the system
will check previous words, then next words for a certain
error word (when it’s possible to do so, that is after the
user continues writing).

How the spelling algorithm works? After selecting the
dictionary, the algorithm calculates Levenshtein distance
(V1) and Letter Pair Similarity (V2) between each
word/expression in the input text and in the dictionary,
then each word/expression is assigned a value of W =
V1*V2. After finishing this step the algorithm sorts the
dictionary words/expressions based on their W value and
the highest N are considered (N value depends on the user
and we currently select the highest 20 different values),
the words with their W values are stored as the possible
match list in order to be ranked based on the rest of the
spelling variables (V3 ~ V6).

For each word/expression in the possible match list the
values of Shape Similarity (V3), Location Similarity (V4),
Soundex Function (V5) and Strings Ranking & Frequency
(V6) are calculated and a final value of all those variables
is given to each word based on Equation (7).

V (Wi) = A*V3 + B*V4 + C*V5+ D*V6 (7)

 Where A, B, C, D are percentages with summation of
100% (weights). Consider A = 0.20 and B = 0.25 and C=
0.05 and D = 0.5 then the Equation will be:

V (Wi) = 0.20*V3 + 0.25*V4 + 0.05*V5+ 0.5*V6

 The chosen values for A, B, C and D are not

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

necessarily the best. They are based on experimentation
and thus need more testing to decide the best range (or
values) for them; Table VI shows some sample results.
 We suggest an auto technique to keep changing the
weights based on user spelling behavior which is
discussed next.
 A question that may arise here: is why we are
processing the words in two phases (calculating the
distance using Levenshtein and Similarity, and then
ranking)? Simply because it’s better to rank words with
minimum differences from the input word rather than
ranking all the words in the dictionary, in the end we are
looking for the word with minimum distance and high
ranking. For example assume we have the word A:
 if we considered two stages then the word ا�/�7!وون
 will be in the output , but if we did it in only one ا�/�7!ون
stage then the words ون، ا�/��!ون!A�/ا� will also show up.
 We did a quick test to compare our sample results
with results from Ayaspell and Microsoft spellers; Table
VII shows the quick comparison.

TABLE VI
SAMPLE RESULTS

Input Output(s)

ا���3*�، ا�/�7*� ، ا���
�� ا��73*� 1 ,

ا�q/�!ة، ا���q!ة ، ا�����ة ا�q;4!ة 2 ,

3 U4�%	س ا��
���ا��	��ري، ا��	*�س ، ا� ,

�77X4ن، �734ن ، ����
ن 4<�73ن 4 ,

5 <4�ا�/��4، ا�"!� ، ا�/�4! ا�/ ,

6 a
ا�"!رس ،ا�/�ر
� ا�/�ر ,

7 oH�A/ا� r� Bا !qا�� $�
 ا�(�� ا)'�& ا�"%
و�A4	و��ن، وA4+	%��ن ، و�%,�و*
ن وA4+	و���ن 8 ,

TABLE VII

SAMPLE RESULTS COMPARISON

Input Our Approach Microsoft

(Office 2010)

AyaSpell

، ا�/�7*� ، �ا���
� ا��73*� 1
 , ا���3*�

 ��
، ا���
ا�/�7*�، ا���3*�

�ا���� ،
، ا�/�7*�
 ,ا���3*�

2 !4;qا�s ، ا�����ة
ا�q/�!ة، ا���q!ة ,

s!4;qا�،

 ا��q;4!ة
،ا�q;4!ة

،ا�3!4;ة

 ا�����ة
3 U4�%	س ا��
���، ا�

، ا��	*�س
 , ا��	��ري

5
 ،ا��	%�

س ���ا��/�ي، ا�

س���،ا�

،ا���Aا

 ا����ا

ن 4<�73ن 4���� ،

�77X4ن، �734ن ,

، �734ن ،����
ن
 �3/4ن

ن���� ،
، �734ن

 �73/4ن
5 <4�، ا�"!� ، ا�/�4! ا�/

�4� , ا�/
، ا�"!� -----

t4��4)، أ�/qا�

6 a
ا�"!رس ،ا�/�ر
� ا�/�ر ، ا�/�رع، ا�"!رس ,
�
 ا�/�ر

، ا�/�رس
، ا�/�رع
	
 ا�/�ر

7 r� Bا !qا��
oH�A/ا�

ا�(�� ا)'�&
$�
 ا�"%

 ----- -----

 ، و�%,�و*
ن وA4+	و���ن 8
، وA4+	%��ن
 , و�A4	و��ن

، و�%,�و*
ن و�%,�و*
ن
. و��A+	و*�ن
 وA4+	و*�ا

 Let’s take the word 4!ة;qا� in Table VII for example. In
our approach the first results will be 4!ة;Iا� which is what
we really meant by the error word. However Microsoft
Office 2010 Speller didn’t output 4!ة;Iا� only 4!ة;qا� the
same word with ة instead of s , AyaSpell gave 4!ة;Iا� as
an output however its ranked it 3 in its possible outputs,
it seems that the word 4!ة;qا� was a name of an old food
according to [18]. Checking our general dictionary we
found that the word do exist however with a very small

frequency (F=2), which affected its ranking in our
spelling algorithm.
 We can notice also that Microsoft Office 2010 failed
to retrieve a result for the word <4� also it seems that , ا�/
the word <ُ4w�ّ With .[19] ا�+<�ُ) ا�+;means ;4 ا�ِ/ on the د ,
however such word is not a frequent one.
 We also can notice that both Ayaspell and Microsoft
Office 2010 speller doesn’t take double and triple
expressions in processing, which give our spelling
approach an advantage.

B. Adapting to user errors patterns: (Auto Learning

apprach)

As seen in equation (7), the values of the A, B, C and

D can be customized based on the use of the spelling

algorithm. That is if the spelling is done over a text

extracted from an OCR system then it is reasonable to

give the shape similarity variable (addressed through A in

equation (7)) more weight since the errors in the output

of an OCR system is most likely related to letters/symbol

shapes. However, if the spelling algorithm will be used to

fix speed typing errors then it is reasonable to give the

location variable (addressed through B in Equation (7))

more weight. The point is that the system can be

customized based on some initial information, given or

calculated, on the environment of use.

In most cases the spelling system will not be tuned or

customized manually, in normal use the errors may vary

from keyboard errors to soundex or shape errors... etc.

We now introduce a technique for customizing the

weights (A, B, C and D) in the ranking equation

(Equation 7) of our spelling algorithm based on the user

typing behavior. The technique is based on auto learning

from users’ errors. Assuming the user made error X: !ا���
and the system gave two possible outputs Y1: !�Cا� and

Y2: !�3ا� , assuming the user selects Y1 as the correct

output, the system will recheck the ranking variables with

the correct output that is to recheck the value of V3 ~ V6

between X and Y1 and stores the result. This is done

every time the user makes a mistake, the variable with the

best results is the variable with the most effect on the

ranking equation thus the system will increase its weight

and lower the weights of other variables with smaller

results. Table VIII explains how this is done.

TABLE VIII

WEIGHTS AUTO CHANGING

X Y Shape

Similarity

(V3i)

Location

Similarity

(V4i)

Soundex

Function

(V5i)

Ranking &

Frequency

(V6i)

i=1

 ا�0(�

 0.864 1 1 0.750 ا�1(�

Total Sum(S) S= S+(V3i+V4i+V5i+V6i) = 3.614

Ranking

Weights =

A=

∑(V3i)/S

0.208

B=

∑(V4i)/S

0.277

C=

∑(V5i)/S

0.277

D=

∑(V6i)/S

0.239

i=2

 0.051 1 0.688 0.688 ���3 آ���

Total Sum (S) S = 3.614 +(V3i+V4i+V5i+V6i) = 6.040

Ranking

Weights =

A=0.238 B=0.279 C=0.331 D=0.152

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

Table VIII shows an example of two mistakes (i=1,

i=2) , the first one X = !ا��� and the user selects Y = !�Cا�
from the output list as the correct word , the system

calculates the variables for Y then sum all of them and

calculates new percentages by dividing each variable

value on the total sum.

For i=2 , X= D�	آ and the user selects Y = D�	� the

system calculates the new variables and then add them to

the values of the variables in the case of i=1, this is also

done to the sum and then finds the new percentages.

 As seen in Table VIII the soundex weight increased

noticeably because the user choice was based on outputs

pointing to errors related by sound. Also this can be used

as a history table for the user selected outputs which can

help if the user did the same mistake again; the system

checks the user history before checking with the

dictionary.

C. Initial Tests

 An initial test was done using 100 articles from the
380 articles used in testing the categorizing algorithm,
(section IV). The articles were tested twice, the first time
by adding manual errors; that is we manually introduced
mistakes inside each article, the second time a random
letter changing automated system was used to generate
errors inside each article. Table IX shows the results,
gives an indication about the early tests and the pass
percentages (no auto learning technique is used in the
tests). The tests are made with A=0.2, B=0.25, C=0.05,
D=0.5.
 From the results in Table IX we can conclude that
adding categorized dictionaries will improve the results
and will speed up the system (since we are using shorter
lists of reference words which means a smaller
dictionary).
 In Table X we show some complexity and response
time results for our algorithms (Percentage and
Difference Categorization Algorithm and the Spelling
Algorithm), which are used in the spelling mechanism
based on dynamic categorized dictionaries.
 It is worth mentioning that the process of selecting
the spelling dictionary and the values of the weights can
be highly customized by the user. Future work will focus
on creating different types of tests in order to decide what
are the best values to use for each parameter, when to
adopt auto learning process and what are the best
dictionaries to use and when, as well as they best-selling
databases structures which are most likely to improve the
performance of the entire algorithm.

TABLE IX
EARLY TESTS

Test Type Dictionary Pass Percentage

1 Speed Writing

 (100 articles)

Auto Categorized 82%

General 77%

2 Auto generated errors

(1 and 2 errors per

word possible)

(100 articles)

Auto Categorized

(1 letter error)

90%

Auto Categorized

(2 letters error)

83%

General

(1 letter error)

88%

General

(2 letters error)

80%

TABLE X
COMPLEXITY AND RESPONSE TIME

Percentage and Difference Categorization Algorithm

Complexity of the algorithm O(M*N).

Where M is the number of

words in the input text and N

is the categorized dictionary

size

Average Response1

(Time on Average Machine2)

0.102 Seconds

Spelling Algorithm

Complexity of the algorithm O(M*N) .

Where M comes from the

complexity calculations of

the ranking variables and N

is the dictionary (in use) size

 Average Response3 Using : (Time on Average Machine2)

General Dictionary of 190,000

words with frequency >9 (not

categorized)

3.160 Seconds for each word

Categorized Dictionary of around

10,000 words

0.132 Seconds for each word

1Average time was calculated by testing the time of the 380 testing file.
2Average Machine: Intel(R) Core(TM) Due CPU, P8400 @ 2.26 GHZ & 2

GB of RAM, OS: Microsoft Windows XP(TM).
3 Average time was calculated by testing 100 misspelled words.

VI. CONCLUSION

 We presented a spelling approach that is supported by
dynamic categorized dictionaries, customized ranking
variables, with the aid of a categorizing approach and
auto learning spelling mechanism. In our research we
employed a statistical/Corpus-based approach and data
obtained from the Arabic Wikipedia and Palestinian
newspaper. We described how the corpus was built
especially the categorized Wikipedia corpus. Based on
corpus statistics we constructed databases of words and
their frequencies as single, double and triple word
expressions and customized dictionaries based on
automated Wikipedia articles filtration. Then we used
those dictionaries as the infrastructure for our spelling
and error correction method. Our spelling technique is
based on earlier work but incorporating new spelling
variables and dynamic dictionaries. We briefly reported
on the results of preliminary testing, both on
categorization and spelling. While the results reported
here are promising, they must be viewed as work in
progress, still in need of more testing, refining,
integration and deployment in real life settings and
evaluation by users in a real working environment. There
will also be a need to work on better data structures to
improve the performance of the tools to allow for more
transparent integration into working systems.

ACKNOWLEDGEMENTS: They authors would like to thank Google

and Birzeit University for supporting this research through grants, and

the two anonymous referees for their comments that helped improve the

paper.

4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco

REFERENCES

[1] Veecos, Arabic online content: web metric study, Veecos Website
.[Online].Available:http://www.veecos.net/portal/index.php?optio
n=com_content&view=article&id=5997:2011-04-16-08-53-
48&catid=42:doctorah&Itemid=180,[Jan, 2012].

[2] Supreme Council of Information and Communication
Technology, Arab Digital Content, ictQATAR
Website.[Online].Available:
www.ictqatar.qa/output/Page2039.asp/,[Mar, 20,2011].

[3] Mohammed bin Rashid Al Maktoum Foundation, Sawaed
Programme, Mohammed bin Rashid Al Maktoum Foundation
Website.[Online].Available:
http://www.mbrfoundation.ae/English/Entrepreneurship/Pages/Sa
waed.aspx /,[Mar, 20,2011].

[4] ESCWA, Digital Arabic Content, ESCWA
Website.[Online].Available:
http://www.escwa.un.org/divisions/projects/dac/index.asp/,[Mar,
20,2011].

[5] Shaalan, K., Aref, R. and Fahmy, A. : “An Approach for
Analyzing and Correcting Spelling Errors for Non-native Arabic
learners.”; The 7th International Conference on Informatics and

Systems (INFOS 2010);Cairo, Egypt.; 28-30 March 2010.
Website.[Online].Available:
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5461784&
abstractAccess=no&userType=inst

[6] Hodge, V. J. and Austin, J. : “A Comparison of Standard Spell
Checking Algorithms and a Novel Binary Neural Approach.”;
IEEE Transactions On Knowledge And Data Engineering, Vol.
15, No. 5, September/October 2003

[7] Yahya, A. and Salhi , A. : " Enhancement Tools for Arabic Web
Search : A Statistical Approach"; 7th International Conference on

Innovations in Information Technology; Abu Dhabi, United Arab
Emirates.; 25-27 April 2011. Website.[Online].Available:
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=589387
1&isnumber=5893793

[8] Wikipedia, Levenshtein Distance, Wikipedia
Website.[Online].Available:
http://en.wikipedia.org/wiki/Levenshtein_distance/,[Feb, 2011].

[9] Hodge, V. J. and Austin, J. :"A Novel Binary Spell Checker.";
Artificial neural networks--ICANN 2001: International

Conference, Vienna, Austria, August 21-25, 2001.
Website.[Online].Available:http://books.google.ps/books?id=YT4
mrcAx6lEC

[10] Wikipedia, Hamming distance, Wikipedia
Website.[Online].Available:
http://en.wikipedia.org/wiki/Hamming_distance/,[Feb,2011].

[11] Catalysoft, How to Strike a Match , catalysoft Website.[Online].
Available: http://www.catalysoft.com/articles/StrikeAMatch.html

[12] The Arabic online content indications project , Computer Research
Institute , King Abdul-Aziz City for Science and technolog.
Website.[Online].Available: http://cri.kacst.edu.sa/en/cri-
products/current-projects

[13] Wikipedia, Soundex, Wikipedia Website.[Online].Available:
http://en.wikipedia.org/wiki/Soundex,[Feb,2011].

[14] Wikipedia, Stop Words, Wikipedia Website.[Online].Available:
http://en.wikipedia.org/wiki/Stop_words,[Feb,2011].

[15] Al-Harbi, S., Almuhareb, A., Al-Thubaity, A., M., Khorsheed S.
and Al-Rajeh, A. : “Automatic Arabic Text Classification”. In:
Proceedings of The 9th International Conference on the Statistical
Analysis of Textual Data, Lyon-France. [Online]. Available:
http://eprints.ecs.soton.ac.uk/22254/1/Arabic-Classification.pdf

[16] El-Kourdi, M., Bensaid, A. and Rachidi, T. .: “Automatic Arabic
Document Categorization Based on the Naïve Bayes Algorithm”.
20th International Conference on Computational Linguistics.
August, 2004, Genev. [Online].Available:
http://acl.ldc.upenn.edu/W/W04/W04-1610.pdf

[17] Al-Shalabi, R., Kanaan, G., and Manaf, G. H. : “Arabic Text
Categorization Using kNN Algorithm”. Proceedings of The 4th
International Multi-conference on Computer Science and
Information Technology, Vol. 4, Amman, Jordan, April 5-7, 2006.
[Online].Available:
http://www.uop.edu.jo/download/research/members/CSIT2006/vol
4%20pdf/pg20.pdf

[18] Islamweb, Fath Al-Bari, Saheeh Bukhari Explanation.
[Online].Available:
http://www.islamweb.net/newlibrary/display_book.php?idfrom=9
866&idto=9867&bk_no=52&ID=3017,[Feb,2012].

[19] Almaany, Detentions ,
[Online].Available:
http://www.almaany.com/home.php?language=arabic&lang_name
 5 !& =&word= <4� .type_word=0, [Feb, 2012]& ا�/

