
4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco 

 

Arabic Text Correction Using Dynamic Categorized Dictionaries 
A Statistical Approach 

 

Adnan H. Yahya and Ali Y. Salhi  

 

Department of Computer Systems Engineering, Birzeit University, Birzeit, Palestine.  

yahya@birzeit.edu, asalhi@birzeit.edu 

     

 
Abstract— This paper describes a technique for spelling and 

correcting Arabic text that provides different variables that 

can be controlled to give customized results based on the 

properties of the processed text. The proposed technique 

depends on dynamic dictionaries controlled and customized 

based on the input text categorization. In the research 

reported here we employ a statistical/corpus-based 

approach with  data obtained from the Arabic Wikipedia 

and local Palestinian newspapers. Based on corpus statistics 

we constructed databases of words and their frequencies as 

single, double and triple expressions and used that as the 

infrastructure for our spelling and text correction 

technique. Our spelling technique builds  on  earlier 

work[7], but using new spelling variables and dynamic 

dictionaries based on categorized texts. We briefly report on 

the results of preliminary testing and analysis. While the 

results reported here are promising, they must be viewed as 

work in progress, still in need of more testing, refining, 

integration and deployment in real life settings. 

Keywords — Natural Language Processing; Arabic 

Wikipedia; Arabic Text Correction; Categorized Corpus; 

Text Categorization 

I. INTRODUCTION 

The Arabic online content has increased from 0.1% of 
the worldwide content (40 million of 40 billion online 
pages) in 2007 to 0.3% (156 million of 47 billion pages) 
in 2010, an increase of 300% in  three years and was 
expected to reach 330 million pages by the start of 
2012[1]. This means that there is a global awareness 
among Arab writers and users about the importance of 
creating and publishing Arabic web content. Also this can 
be noticed through many online initiatives such as (on 
October 23, 2010) the “Digitally Open: Innovation and 
Open Access Forum” hosted by , ictQATAR and Creative 
Commons[2]. The forum addresses how innovation can 
push and increase sharing and openness of Arabic content. 
Earlier, Mohammed bin Rashid Al Maktoum Foundation 
in Dubai started the Sawaed program focusing on 
developing the capabilities of talented Arab entrepreneurs 
by providing non-refundable grants with a major recent 
focus on the development of online Arabic content[3]. 
Also, in 2007 the Information and Communication 
Technology Division (ICTD) at UN-ESCWA launched a 
project on “Promotion of the Digital Arabic Content 
Industry through Incubation”[4]. With this increase in 
Arabic content awareness and creation, there is a great 
need for tools to overcome the many challenges in 
processing and retrieving Arabic web content. In this 
paper we describe a technique for spelling and correcting 
Arabic text. The proposed technique provides different 

variables that can be controlled to give customized results 
based on the category of the text being processed. The 
technique depends on dynamic dictionaries that can be 
controlled and customized based on the input text 
categorization. We employ a statistical/Corpus-based 
approach built  on data obtained from the Arabic 
Wikipedia and local Palestinian newspaper. Based on 
corpus statistics we constructed databases of words and 
their frequencies as single, double and triple expressions 
and used that as the infrastructure for our spelling and text 
correction technique. 

The idea of using personalized dictionaries for spell 
checking to account for the peculiarities of individual 
writing styles and word usage is not new. However, 
usually the personalized dictionary adds user’s words to 
the base dictionary to avoid tagging correct user words as 
errors. Our dictionary here is nontraditional in the sense 
that it has double and triple expressions as well as single 
words, plus we associate frequencies with each expression 
to reflect its usage and utilize this frequency to rank the 
candidate corrections. We further extend the idea here to 
allow the user to work with different dictionaries based on 
the topic he/she is writing on: that is, the used dictionary 
need not always include the base dictionary, but the latter 
is replaced by a specialized one that is topic-specific. 
Since our spellchecking offers correction suggestions as 
well, we also force the suggestion order to take into 
account the word usage in that category.  The approach 
will use a set of weights to account for the various sources 
of spelling errors in Arabic to rank the candidate 
corrections. So, it theoretically can adapt to user behavior 
in terms of the dominant source of errors in his/her writing 
which can be used to determine the choice of the weighing 
parameters in the ranking equation. 

Taking a look at earlier and related work, one can see 
that there are few available Arabic spell checkers that can 
be split into commercial such as Microsoft spellchecker 
used in Microsoft products and free such as Ayaspell 
which is used in OpenOffice.org (an open source 
multilingual office suite)[5]. We did a quick comparison 
between Ayaspell, Microsoft spell checkers and our 
approach, which is discussed in section V.  

It might be that the simplest technique to create a 
spellchecker is by ranking a set of possible results based 
on the distance between them and the current investigated 
word, using a technique such as Levenshtein distance 
which works as a metric that gives the minimum number 
of steps needed to convert one string to another [6,7,8]. 
Another technique that can be used is Agrep which is 
based on the minimum editing distance between words by 
insertions, deletions and substitutions[6,9]. Yet another 
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technique used is based on Hamming distance to 
overcome substitution and transposition spelling errors[9]. 
Hamming distance approach calculates the number of 
positions at which the corresponding symbols are 
different[10]. We adopt Levenshtein distance in our 
spelling algorithm, but  with another method that 
calculates the similarity between two strings based on the 
number of adjacent character pairs which are contained in 
the two strings. (Discussed in Section III). 

One can talk about two types of error processing: 

- Spelling errors detection: It detects which words are 
possibly wrong in a text. One can simply compare the 
text under processing with a dictionary of Arabic 
words, and extract all words with no possible match 
in the dictionary. 

- Spelling errors correction: This can be classified into 
context dependent or context independent. If the 
spelling is based on information available from the 
processed text then it’s a context dependent, else, if 
the method  can correct individual words based on 
dictionaries without reference to other text parts, then 
it is context independent. There are many  techniques 
used in correction  based on editing distance and 
others based on ranking techniques such as those  
introduced in[7,9] where parameters  such as 
soundex, shape similarity, keyboard keys locations 
and statistical frequency analysis  are used to rank 
alternative spellings. 

     Our suggested approach is a mix between context 
dependent (using categorization) and independent (using 
customized dictionaries) and has three components: 

- Misspelled words detection techniques: this depends 
on an Arabic corpus (dictionary). If a word in an 
Arabic input text is not found in the dictionary, then it 
is considered  a misspelled word. It may also be 
considered misspelled if it is unlikely to occur in the 
given context (say in a given sequence of words).  

- Dynamic dictionaries that can be controlled and 
customized based on the input text categorization; we 
built resources for different categories, something we 
will discuss in section II. The categorization can be 
controlled either manually or automatically through a 
categorization algorithm. 

- Ranking metric based on a modified version of 
Levenshtein distance   with a text similarity 
algorithm[11] which we will discuss in section III. 
There, we employ ranking parameters such as 
soundex, shape similarity, keyboard keys location and 
statistical frequency and string positioning. 

The rest of the paper is organized as follows: We 
address building dynamic categorized dictionaries based 
on Arabic Wikipedia in section II. The dictionaries that 
will be adopted in our spelling algorithm and the different 
ranking and spelling variables used are discussed in 
section III. The algorithm also depends on a categorization 
technique that gives promising initial results and is 
highlighted in section IV. In section V the spelling 
algorithm is detailed with some initial testing results and 
complexity analysis. Then we give our conclusions and 
point to some future work. While the results reported here 
are promising, they must be viewed as work in progress, 
still in need of further testing, refining, integration and 
deployment in real life settings. 

II. SPELLING DICTIONARIES AND DATA COLLECTION 

For the spelling algorithm we need to build dictionaries 
to be used as the base for the checking and analyzing 
process. The algorithm will depend on several sets of 
dictionaries. 

A.   General Corpus 

      The first set depends on a statistical/Corpus approach 
based on contemporary data we obtained from various 
sources. The corpus has around 75 million words of 
written Arabic covering different topics (for more about 
this corpus please check[7]). Data statistics on our corpus 
are shown in Table I, the corpus was processed to output 
single, double and triple expressions.  So we will have 
three different general dictionaries each containing 
words/expressions sets with frequency of appearance.  

B.   Wikipedia Categorization 

      The second is a categorized set of data that depends 
mainly on Wikipedia. The data was collected using an 
automated process of connecting related articles together 
based on a manual categorization done by the Wikipedia 
editors (each article in the Wikipedia is tagged by 
different keywords/categories) and a list of collected 
Arabic Wikipedia topics obtained from the outputs of the 
Arabic online content indications project from the 
computer research institute in King Abdul-Aziz City for 
Science and Technology [12]. The list provides data rows 
of the form <title, content>. The number of 
documents/articles in this list is 96,128, which means the 
number of titles will be the same. Using these titles we can 
create sets of related articles and to do so we need articles 
to be tagged by keywords or categories and that is already 
done by Wikipedia editors. 

Wikipedia editors use manual tagging/categorization. 
That is, each editor can suggest categories or keywords to 
tag articles, which means each article can be tagged under 
different categories. The overlapping categories are not 
fixed and one can find categories such as    ������ ء	
، رؤ

رؤ
	ء ا����� ا������ ا���������، رؤ
	ء وزراء ������    those 
categories can be merged in one category such as  د	ة �
��������� or in a more general category which is ������ ر	أ�� 
or a still the more general category �
	�
. The categories 
that can be found in Wikipedia are too specific on one 
hand and on another can be repeated using  different terms 
as seen in the above example.  Figure  1 shows an article 
talking  about س� that has 11 categories and some of the ا��
categories  are really important such as , �� !"ن ا�#�� ا��%
آ�+	*��   %�ن ,&�ا() '�	�� &! ��  , �
��% ��%-
�ن ذات أه/��   ,أ%	آ� إ%
 .and so on د���4 ��3��%

 
TABLE I. 

DATA STATISTICS 

Description Statistics 

Processed Words 75,132,120 

Arabic Words (no repeat) 962,879 

Arabic Words ( F > 1) a 519,827 

Multi words expression (no repeat) 1,843,274 

Triple words expression (no repeat) 1,414,010 

Number of documents (PDFs , HTML) Around 80,000 

Average letters per word 5.4 letter 

The most frequent word 1,203,663 (5�) 
Number of letters for the longest word 15 (�����	�"%ا�67!و) 
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Figure 1: Categories for the title/article  "س�"ا��  

 

       Based on Wikipedia categories we can link  articles 
with other articles based on the shared categories between 
them, the more shared categories the more the articles are 
connected and thus related. Also this can mean that there 
is a possible relation between categories in different 
articles if the categories appear jointly  in different 
articles. For example if text A is categorized under,  say,  
، 7�%	7�*	   and text B is categorized under %�7	*�7	  , ��ا*�� *���9
 then we can conclude that those three categories  �	�� :!آ��
are related. However, if we go deep in this relation 
analysis we may end up connecting all categories in the 
Wikipedia (which is not good) so one should be wise in 
selecting limitations in relation depth and maybe interfere 
manually  to have control over how deep the 
categories/articles relation goes. We developed an 
approach (we named related categories approach) that 
starts with a predefined category (starting point), say ء	4;�� 
, it parses the articles to filter the ones with  ء	4;�� as one of 
their  categories, then for each found article, the categories 
found in that article are added to a queue, thus if an article 
has  ء	,��;4 	*�7	7�%  and  ��	� as categories then both 	7�*	7�%  
and  ��	�  are added to the queue to be parsed in the same 
way as ��;4	ء   . When parsing all the articles that have  ء	4;�� 
as one of its categories, we move to the next category in 
the queue which is for example 7�*	7�%	  , same is done here 
as in ء	4;��, each category may bring new categories to the 
queue. Each seen category will hold a variable that 
indicates the number of articles in that category. This 
variable reflects the importance of a category so if 	7�*	7�% 
was found in a large number of articles then it will be 
reflected in its importance (the articles may have  ء	4;��  as 
one of their categories and may not, even though the 
starting point is ء	4;��) and so on for all other categories. 
The question that arises here is when to stop? A variable 
N is introduced that control how many articles to process, 
for example we set N to 50, which means when the 
number of processed articles reaches 50 the operation 
stops (starting from articles that hold ء	4;�� as a category), 
and the categories stored in the queue (ranked based on 
their importance, which is the number of articles 
processed that include a certain category) are considered 
for manual check.   A manual phase is adopted here to 
make sure that the categories in the queue (which is added 
due the parsing of the 50 articles) are truly related and do 
not cause major problems in categorization. Table II 
shows some categories with their top 10 related 
categories; let’s take the category ء	4;�� for example.  We 
parse all the articles in all the related categories for ء	4;�� 
(extracting their Arabic content), that is to parse the 
articles (from the 96,128 list of articles) that includes at 

least one of the categories related to ء	4;��, in the end we 
will have categorized corpus for  ء	4;�� . 
     Increasing N will increase the categories and thus 
increase the number of articles processed, but will 
increase the need for manual checking of the added 
categories in order to maintain control over the quality and 
value of the corpus.  
 

TABLE II. 
SOME CATEGORIES WITH THEIR TOP 10 RELATED CATEGORIES, USING 

THE RELATED CATEGORIES APPROACH 

Selected word to find related categories to:  ء����� 
 &�) ا��7ن ��;4	ء

 أ&�اد ا�7) *����
 =�ء (�ار4>

?��*<!4	ت ��;4	  أ%@�� آ�*�� 
 اC9	Bت إ�A7!و*�	ت

Selected word to find related categories to:  ��  

D� �3) 

 %�</� ا��3C ا�+	�/�� &�) اEدو�4

 أ%!اض ورا'�� أ%!اض
 %#	دات :��3��C% �4	ت ����

��� &�) ا��را'� (�

Selected word to find related categories to:  ب
��� ��� 

ا�3	
�ب &�)  ��
�: 

��*��C& ت	7�H �I%!  
 إ*�9 J*!A��D ا���	*	ت
 %+��%	K��39 ��*��C& ��9 ر4	=5

 أ%� �7�H ا�3	
�ب ا�/+��%	ت أ%�
Selected word to find related categories to:  د�� 

 ��L إ
-%5 د�4

�	 ��L &�	داتM ت	*	د4 


-مOن ا	د أرآ	6P 


�� *�Cص د���4��H��*آ� 

��%-
 ��ا?R إ
-%�� H!4+� إ

      
     Using this technique we built a Wikipedia based 
categorized corpus. Table III gives statistics about the 
predefined categories that we adopted; of course the data 
in this corpus is subject to change due continuing data 
processing. Those categories will be used in experiments 
related to spelling by first categorizing the text being 
spellchecked in order to give a higher rank to possible 
results within the text category. For example,   the 
following sentence  ل	ا ر4Tه�4�I%  if it comes in a sport text 
then  �4�I% most likely to be ��ر4% but if it comes in a 
financial text then  �4�I% is most likely to be  �4�P.  
     So far, we defined 26 categories as seen in Table III. 
Categories: م�أو�/��	د، U�9، آ!ة 
��، آ!ة �  , 
�	رات 
�	ق  can all 
be joined under �=	4ر category. This will give more 
dynamic options of using a major category �=	4ر if the 
text is about �=	4ر or a subcategory م� for example if آ!ة �
the text is about �=	4ر in general and  م�    .in particular آ!ة �
      Working with a more specific category like م� will آ!ة �
help in decreasing the dictionary size and will improve 
access time (less processing and less queue size) 
compared with more general category like �=	4ر. 

        Using the “related categories” approach we can 
create new categories by starting from the desired 
category.  For example if a user  decides that there is a 
need for the category  ا����ر then adopting the same steps 
we did for ء	4;�� will output a new corpus specialized in 
 .from the Wikipedia articles ا����ر
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TABLE III. 
WIKIPEDIA CATEGORIES CURRENT STATISTICS  

Category # of 

unique 

words 

# of all 

words 

processed 

Average 

Frequency 

 

Average 

length of 

words 

 5.94 9.45 54,674 11,035 آ!ة ��م

��
 5.75 10.43 44,479 8,155 آ!ة 

U�9 9,419 65,227 12.07 6.08 


�	�	ت 
�	رات 5.78 7.76 24,477 5,837 

 6.03 10.84 65,445 12,300 أو�/��	د

 6.15 7.55 52,276 14,405 إ�CA	د

5%-
 5.80 8.41 65,210 29,219 إ

53��% 15,329 19,630 6.57 6.03 

 6.00 6.94 27,771 7,335 آ6! 	?�� وإ�A7!و*��

��7�*	7�% 8,216 28,796 6.27 5.98 

و 7�H	ت آ/��9!  13,945 62,020 7.63 6.06 

 6.12 7.26 45,025 11,717 آ�/�	ء

 5.85 5.88 16,217 5,204 ��;4	ء

 6.03 6.82 26,746 6,928 ر4	=�	ت

 5.90 5.27 25,406 9,416 أ:�	ء

 X  D� 13,720 53,923 7.44 5.67!ي

����) 14,230 45,322 4.62 6.16 

Y4� 5.96 7.95 68,985 20,217 9	ر4> :

(4� 5.90 7.21 83,103 22,890 9	ر4> �

 H 15,666 35,166 4.72 5.52+! وأدب

5.74 5.63 38,196 12,998 %�
��] و�Z	ء 


��/	 و%�!ح 5.82 5.41 41,662 14,252 

 5.88 5.14 25,916 10,393 د4	*	ت أ�!ى

�
	�
 11,2367 26,605 8.23 5.81 

 5.66 4.32 14,923 7,318 %�=] و%!أة

��	P"!ا  10,157 31,155 5.55 6.07 

 

III. SPELLING VARAIBLES 

Our Spelling algorithm depends on different variables, 

such as Levenshtein distance and similarity calculations   

to decide on the best possible matches for a certain word, 

then other variables such as soundex, keyboard location, 

shape similarity and frequency are considered to rank the 

candidate matches in the most efficient way.  The success 

measure is to have the user intended word the highest 

ranked suggestion. Of course those variables will be used 

to rank candidate matches whether they are single, double 

or triple expressions (based on single, double and triple 

dictionaries).  

A. V1: Levenshtein distance (Lev) 

Levenshtein distance works as a metric for the 

minimum number of steps needed to convert string A to 

string B[8], A and B could be single, double or triple 

expressions. For example if we have A: �^ا�� and B: ا���� 
then Levenshtein distance between A and B will be 1, 

also C: ا��زن  has a difference of 1 from A,  plus the word 

D:  !9ا�� has 2 differences. Word D will have less ranking 

(based on Levenshtein distance alone) since it differs by 

two letters. From this last point the  problem of swapping 

errors shows up in the normal Levenshtein distance 

algorithm, for example let’s take A: ا���ن and B: ا���� 
then the words will have two units of distance  not one. 

However if the user meant ا���� the system will end up  

ranking the latter in lower positions, but it will rank C: 

 in a higher position due to one difference. So a ا���ق

modification by mapping the two letter swap differences 

to one unit of distanced is needed.  

Levenshtein distance function will output the result 

based on Equation (1) 

Lev(A,B)= 1 – [ #ofDiffrenentLetteres/min(Length A, Length B)] (1) 

For Example assume A is Jا��� and B is Y@ا��� , then the 
number of different letters are 2 (the last two letters in B) 
thus the equation will become 1-[2/min(5,6)] which 
equals  to 0.6. 

B. V2: Letter Pair Similarity (LPS) 

The letter pair similarity function finds out how many 

adjacent character pairs are contained in two strings A 

and B. It is most useful when we are spelling based on 

double and triple expressions, Equation (2) shows how 

the letter pair similarity is calculated[11]. 

    LPS (A, B) = (2*| pairs (A) ∩ pairs (B)|) / (|pairs (A)| + |pairs (B)|)    (2) 

       For example let us take the following strings, 

A:  5 !+ا���� ا�  and B:  5 !+ا���� ا� , maybe the user really 

meant B not A. Using Levenshtein distance will give 10 

differences between the two  strings which will  discard 

(very low ranking)  expression B from the possible 

matches. However the letter pair similarity function will 

give a 100% match between both sentences based on the 

following calculations: 

String A  5 !+ا���� ا�  will be divided into pairs of letters 

(after splitting the string based on space character) : P1{ 
ا�+! and String B  5 { 5 ، رب، &!، �a، ال ، ،��، وط ، �� ، ال

، ��، ال،  5 ، رب، &! ، �a، ال }will be divided into P2 ا����
��، وط } , according to (2) the similarity will be: 18/(9+9) 

= 1.00 which will rank the sentence high in the possible 

match list. 

C.   V3: Shape Similarity 

A function which measures the similarity in shape 
between two strings A and B.  For example, if A is �^ا�� 
and the spelling algorithm possible matches has two 
possibilities B ا���� and C  ا��زن . Both are correct 
alternatives.  However the shape similarity function will 
detect that  B  looks closer  in shape to  A than C  since ط  
and ظ  have  almost the same shape, and letter ز doesn’t 
look as close.  

The algorithm depends on dividing the alphabet into 
sets of letters with related shapes then comparing strings 
A and  B to calculate the number of related letters. If letter 
i in String A and letter i in String B are in the same shape 
group then they are considered related, Equation (3) 
shows how to calculate the shape similarity. For more 
details please check [7]. 

  ShapeSimilarity(A, B) = #OfRelatedLetters/ max(length A, length B)   (3) 

D.   V4: Location Parameter  

A function that takes into consideration the locations 
of letters on the keyboard. It acts similar to the shape 
similarity function; however the related letter groups are 
based on adjacency on the keyboard. For example,   the 
letter ا will have the following related group: { ت ل ف غ ع ة
ـ i ‘M أ O E إ  ى } which are  the letters located around it in 
the keyboard (with Shift Key on and  off), this also can be 
extended to restore Arabic text entered in Latin due to 



4th International Conference on Arabic Language Processing, May 2–3, 2012, Rabat, Morocco 

failure to switch keyboard entry language (currently PC 
keyboards are adopted, though it can be extended to other 
layouts), for example we can extend the related letters 
group for   ا  to include {h, H}, which are the letters in 
Latin that shows up due to failure to switch keyboard 
entry language. 

The function defines two variables 1) equalLetters if 
the two letters  (Ai and Bi) are equal and 2) relatedLetters 
if the two letters are related on the keyboard based on 
related letters map. Equation (4) shows how to calculate 
the location similarity. For more details please check [7]. 

 

LetterLocation(A,B) = (#equalLetters + #relatedLetters]) / max(length A, 
length B)                                                                                                   (4) 

E.   V5: Soundex Function 

Originally, this is a “phonetic algorithm for indexing 
words by sound as pronounced in English”[13]. In our 
case indexing strings by sound as pronounced in Arabic, 
it’s similar to the other similarity functions with “related 
group” letters. For example the letter س has the following 
group that sounds like it { ث، ص ،س  } which are  the letters 
with the same sound at least in some common 
pronunciations. Equation (5) shows how to calculate the 
shape similarity. For more details please check [7]. 

 

Soundex (A, B) = (#relatedLetters / max (length A, length B))             (5) 

                                                                              

F.   V6: String Ranking and Frequency (R&F) 

      Another variable to consider in ranking the results of a 
possible match list is the candidate string rank (we say 
string because this is applied to single words, double and 
triple expressions) and frequency variables. String ranking 
refers to the position of a string in a dictionary according 
to frequency, and the frequency refers to the number of 
appearances of a string over   the sum of all frequencies in 
the candidates match list. For example,  in a list 
(dictionary) consisting  of six strings and their dictionary 
frequencies { A:100 , B:75 , C:75 , D:30 , E:28 , F:10},  B 
for example has a rank 2 out of 5 not 6 because B and C 
have a ranking of 2 repeated, so the ranking value will be 
(2/5), the frequency of appearance of B is 75 and the 
string percentage frequency will equal 
75/(100+75+75+30+28+10). Equation (6) shows how the 
string ranking and frequency variable is calculated. 

 

R&F(s) = [Rank(s)/TotalRank]*[Freq(s)/TotalDicFreq]                   (6) 

 
       In section V we will explain how the various variables 
are  combined to build the spelling algorithm. 

IV. CATEGORIZING METHOD 

      As we discussed in section II, categorized dictionaries 

are built to be used in our spelling technique. The 

categorizing step is done before the spelling to detect the 

category of an input text and provide the best categorized 

dictionary to be used by the spelling algorithm. The 

categorization process itself may be manual; the user may 

define the category he/she is using and the system will 

adopt this choice or it may be an automated process.  

Many approaches to categorizing text exist in the 

literature, and generally any of them can be used for the 

input text categorizing process. Here, we will 

demonstrate some of our work on building categorizing 

systems. Please note that the work addressed in this 

section is still in progress. 

A. Percentage and  Difference Categorization 

Algorithm  

The algorithm focuses on the relation between ratios in 
the input text words and the corresponding ratios in the 
reference texts (Wikipedia categories) to decide to which 
category to assign each word in the input text. This means 
it will calculate the percentage of each word in the input 
(words frequency/total words) and compare it with the 
word percentage in each category (if it exists), then find 
the difference between the two values and assigns the 
word to the category with smallest difference. For 
example if a word A has  frequency  7 in the input text, 
and the size of the text  is 300 words, then the percentage 
of A  in the input table is 7/300 = 0.023333 then A 
percentage value is calculated in each categorized 
dictionary (if it exists), for example A has a  frequency of 
500 in a dictionary X that has a total frequency (of all 
words) summation of 10,000, then A in X has 500/10000 
= 0.05 , then the relation between A in X and A in the 
input text will be the absolute value of (0.023333 – 0.05)  
which is 0.026667,  this is done for all dictionaries and the 
(category) dictionary with minimum difference is assigned 
to A.  

This process is done for all words, after removing stop 
words from input text (Stop words is a list of very 
common words which are filtered prior to/after processing 
of natural language data [14]) using stop words filtration 
method discussed in [7]. 

The input word and its best match category are stored 
in a table as <Word , Category>, then the algorithm will 
detect the most frequent category and consider it as the 
best match for the current input text. Of course in practice 
the chosen category will be shown to the user to make 
sure he/she does agree, the possibility to change the 
category is always available to the user.  

B. Testing  the Percentage and  Difference 

Categorization Algorithm 

The testing was done on a sample of 380 files, which 

were distributed among different categories. Table IV 

shows the categories which were considered in the test, 

with files numbers and sources (web sites).  

      The Results of the test is shown in Table V, which 

shows a percentage of the successful hits. 

     Taking a look at earlier studies, we can make a quick 

judgment about how good our results are. Based on [15] 

experiments  which evaluated  the performance of two 

popular classification algorithms (SVM and C5.0) on 

categorizing Arabic text using seven Arabic corpora, the 

average results was 68.65% for SVM and 78.42% for 

C5.0. The study using Naïve Bayes algorithm reported 

68.78% accuracy [16] and another study that uses kNN 

algorithm reported 96% accuracy results based on six 

categories which are : �
	�
- (D� ،�3 -(�3 ،ر4	=�، ا�CA	د، 
*�	ت–زرا&� ،
!�	ن   [17]. 

      It is difficult to compare our results with others 

because different data sets and number of categories are 

used in different algorithms and tests, however according 

to some earlier work our results are promising.  
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TABLE IV 
TEST SAMPLE SOURCES 

Category # of files  Web Sites 

 http://www.mbc.net 40 آ!ة ��م

http://www.yallakora.com/ 

http://www.slalah.com 

http://www.kooora.com/ 

http://www.syrian-soccer.com 

��
 http://www.as7apcool.com 40 آ!ة 

http://www.kooora.com/ 

http://www.yallakora.com/ 


�	�	ت 40 http://www.bbc.co.uk 

http://www.yallakora.com/ 

http://www.newstin.ae/ar/formula-

one/ 


� آ6! 	?�� �ه�
 وإ�A7!و*��

40 http://olom.info/ 

http://www.alhandasa.net 

http://aafaq.4t.com/components.htm 

 /http://www.physicsacademy.org 40 ��;4	ء

http://hazemsakeek.com/ 

http://phys.olom.info/ 

http://www.schoolarabia.net 

http://www.marefa.org 

 http://tamernb.jeeran.com 40 آ�/�	ء

http://www.ksa-teachers.com/ 

http://www.schoolarabia.neta7ya2 

http://www1.kisr.edu.kw/ 

http://www.bytocom.com/ 

 /http://www.malomat.net 40 أ:�	ء

http://www.al3ez.net/ 

http://www.dafatir.com/ 

 /http://p48.50webs.com 40 آ�%���9! و7�H	ت

http://www.boosla.com/ 

http://www.arabhardwa 

 http://www.sehha.com 40 ا�CA	د

http://www.asnanak.net 

http://www.csmc.edu/6757.html 

�
	�
 20 http://www.maannews.net 

 
TABLE V 

TEST RESULTS 

# Category #Files Percentage & 

Difference Based 

Algorithm results  

(number of Files) 

Success 

Percentage 

 %95 38 40 آ!ة ��م 1

2 ��
 %95 38 40 آ!ة 


�	�	ت 3 92.5% 37 40 


� آ6! 	?�� 4� %82.5 33 40 ه�

 %85 34 40 ��;4	ء 5

 %85 34 40 آ�/�	ء 6

 %80 32 40 ا:�	ء 7

 %77.5 31 40 آ/���9! و 7�H	ت 8

 %90 36 40 ا�CA	د 9

10 �
	�
 20 16 80% 

 Average 86.58% 

 

V. SPELLING ALGORITHM 

The spelling algorithm is based on the spelling 
variables we addressed in section III and it is an extension 
of earlier work we did[7] with new variables and methods.  

A. The  Suggested Spelling Approach 

      The algorithm starts by detecting the category of the 

current input text as just outlined to decide on which 

dictionary set to use. The dictionaries, including the 

general one (which can be used if the categorizing phase 

is skipped), hold single, double and triple expressions. 

Why have multiple expressions? Let’s take the following 

example: the spelling of �^ا�"! 5 ا�� , the word �^ا��  is 

wrong and the word 5 !"ا�  is correct , however if spelling 

each alone the word �^ا�� will be spelled either ا����  or 

maybe ا��زن .  That depends on the ranking system, but in 

the case of double expressions spelling, the system will 

look at the expression as one block and detect that the 

best solution is 5 !+ا���� ا� neither 5 !"ا���� ا� nor  ا��زن
 Here, the double expressions were useful; same is .ا�"! 5

said about the triple expressions. 
       The spelling algorithm takes into considerations the 
three tables  (single, double and triple expressions) when 
spellchecking a text. It follows the user input while typing, 
for example when the user types  a word (w) in a sentence, 
the spelling algorithm checks the current  {w ||  w, w -1 || , 
w, w-1, w -2} and then { w || w , w+1|| w, w+1, w+2} 
when possible, that is a window of one, two , or three  
words in both direction (to check if the error is better 
corrected using double or triple expressions first). For 
example, assume that the user is typing the following 
sentence : “ 
T  aه!و�A9	�o اE%�	ر &�] 
�ا:K ا��A/ا� p� Eا “ if  
the system doesn’t take a window of three words (triple 
expression checking)  then two words (double expression 
checking) before checking single words errors, it might 
correct  the word !هTا� to 6!ا��  and keep the word  a
�A/ا� as 
is, however if the user still writing and reaches ه!اT�  , the 
system will check {  K:ا�
ا�Tه!&�]   }  if no possible match 
it will check { 
 K:ه!�اTا�  } if no possible match it then 
checks {!هTا�}  and may correct it to  !6ا��. However when 
the user continues writing  the word p� Eا, the system 
again will check { ا�p� Eه! اT  } and assume it is corrected 
to p� Eا��3! ا , then the user continues writing a
�A/ا� then 
the system will check {    a
�A/ا� p� Eه! اTا� } and correct 
the whole sentence to  o
�A/ا� p� Eا��3! ا. If the system 
couldn’t find a match with triple expressions; it goes back 
to the double expressions match. In all cases the system 
will check previous words, then next words for a certain 
error word (when it’s possible to do so, that is after the 
user continues writing). 

How the spelling algorithm works? After selecting the 
dictionary, the algorithm calculates Levenshtein distance 
(V1) and Letter Pair Similarity (V2) between each  
word/expression in the input text and in the dictionary, 
then each word/expression is assigned a value of  W = 
V1*V2. After finishing this step the algorithm sorts the 
dictionary words/expressions based on their W value and 
the highest N are considered (N value depends on the user 
and we currently select the highest 20 different values), 
the words with their W values are stored as the  possible 
match list in order to be ranked based on the rest of the 
spelling variables (V3 ~ V6). 

For each word/expression in the possible match list the 
values of Shape Similarity (V3), Location Similarity (V4), 
Soundex Function (V5) and Strings Ranking & Frequency 
(V6) are calculated and a final value of all those variables 
is given to each word based on Equation (7). 

 

V (Wi) = A*V3 + B*V4 + C*V5+ D*V6                                        (7)                                                                       

     Where A, B, C, D are percentages with summation of 
100% (weights). Consider A = 0.20 and B = 0.25 and C= 
0.05 and D = 0.5 then the Equation will be: 

V (Wi) = 0.20*V3 + 0.25*V4 + 0.05*V5+ 0.5*V6              

          

      The chosen values for A, B, C and D are not 
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necessarily the best. They are based on experimentation 
and thus need more testing to decide the best range (or 
values) for them; Table VI shows some sample results. 
       We suggest an auto technique to keep changing the 
weights based on user spelling behavior which is 
discussed next. 
      A question that may arise here: is  why we are 
processing the words in two phases (calculating the 
distance using Levenshtein and Similarity, and then 
ranking)?  Simply because it’s better to rank words with 
minimum differences from the input word rather than 
ranking all the words in the dictionary, in the end we are 
looking for the word with minimum distance and high 
ranking. For example assume we have the word A: 
 if we considered two stages then the word ا�/�7!وون
 will be in the output , but if we did it in only one ا�/�7!ون 
stage then the words    ون، ا�/��!ون!A�/ا�  will also show up. 
      We did a quick test to compare our sample results 
with results from Ayaspell and Microsoft spellers; Table 
VII shows the quick comparison. 

TABLE VI 
SAMPLE RESULTS 

# Input Output(s)  

ا���3*�، ا�/�7*� ،  ا���
�� ا��73*� 1  , 

ا�q/�!ة، ا���q!ة ،  ا�����ة ا�q;4!ة 2  , 

3 U4�%	س ا��
���ا��	��ري، ا��	*�س ،  ا�  , 

�77X4ن، �734ن ،  ����
ن 4<�73ن 4  , 

5 <4�ا�/��4، ا�"!�  ، ا�/�4!  ا�/  , 

6 a
ا�"!رس ،ا�/�ر
� ا�/�ر  , 

7 oH�A/ا� r� Bا !qا�� $�
 ا�(�� ا)'�& ا�"%
و�A4	و��ن، وA4+	%��ن ،  و�%,�و*
ن وA4+	و���ن 8  , 

 
TABLE VII 

SAMPLE RESULTS COMPARISON 

# Input Our Approach   Microsoft 

(Office 2010) 

AyaSpell 

، ا�/�7*� ،  �ا���
� ا��73*� 1
 , ا���3*�

 ��
، ا���
ا�/�7*�، ا���3*�   


�ا����  ،
، ا�/�7*� 
 ,ا���3*�

2 !4;qا�s ،  ا�����ة 
ا�q/�!ة، ا���q!ة   , 

s!4;qا�،  

 ا��q;4!ة
،ا�q;4!ة  

،ا�3!4;ة  

 ا�����ة
3 U4�%	س ا��
���،  ا�

، ا��	*�س 
 , ا��	��ري

5
 ،ا��	%�

س ���ا��/�ي، ا�  


س���،ا�  

،ا���Aا  

 ا����ا

ن 4<�73ن 4����  ،

�77X4ن، �734ن   , 

، �734ن ،����
ن
 �3/4ن


ن���� ،
، �734ن

 �73/4ن
5 <4�، ا�"!�  ، ا�/�4!  ا�/

�4� , ا�/
، ا�"!�  ----- 

t4��4)، أ�/qا�  

6 a
ا�"!رس ،ا�/�ر
� ا�/�ر ، ا�/�رع، ا�"!رس , 
�
 ا�/�ر

، ا�/�رس
، ا�/�رع 
	
 ا�/�ر

7  r� Bا !qا��
oH�A/ا� 

ا�(�� ا)'�& 
$�
 ا�"%

 ----- ----- 

 ، و�%,�و*
ن وA4+	و���ن 8
، وA4+	%��ن 
 , و�A4	و��ن

، و�%,�و*
ن  و�%,�و*
ن
. و��A+	و*�ن 
 وA4+	و*�ا

    Let’s take the word 4!ة;qا� in Table VII for example. In 
our approach the first results will be  4!ة;Iا� which is what 
we really meant by the error word. However Microsoft 
Office 2010 Speller didn’t output 4!ة;Iا� only 4!ة;qا� the 
same word with  ة instead of  s , AyaSpell gave  4!ة;Iا� as 
an output  however its ranked it 3 in its possible outputs, 
it seems that the word  4!ة;qا� was a name of an old food 
according to [18]. Checking our general dictionary we 
found that the word do exist however with a very small 

frequency (F=2), which affected its ranking in our 
spelling algorithm. 
      We can notice also that Microsoft Office 2010 failed 
to retrieve a result for the word <4� also it seems that , ا�/
the word <ُ4w�ّ   With .[19] ا�+<�ُ) ا�+;means ;4 ا�ِ/  on the د , 
however such word is not a frequent one.   
       We also can notice that both Ayaspell and Microsoft 
Office 2010 speller doesn’t take double and triple 
expressions in processing, which give our spelling 
approach an advantage. 

B. Adapting to user errors patterns: ( Auto Learning 

apprach)  

As seen in equation (7), the values of the A, B, C and 

D can be customized based on the use of the spelling 

algorithm. That is if the spelling is done over a text 

extracted from an  OCR system then it is reasonable to 

give the shape similarity variable (addressed through A in 

equation (7) ) more weight since the errors in the output 

of an OCR system is most likely related to letters/symbol 

shapes. However, if the spelling algorithm will be used to 

fix speed typing errors then it is reasonable to give the 

location  variable (addressed through B in Equation (7)) 

more weight. The point is that the system can be 

customized based on some initial information, given or 

calculated, on the environment of use.  

In most cases the spelling system will not be tuned or 

customized manually, in normal use the errors may vary 

from keyboard errors to soundex or shape errors... etc.    

We now introduce a technique for customizing  the 

weights (A, B, C and D) in the ranking equation 

(Equation 7) of our spelling algorithm based on the user 

typing behavior. The technique is based on auto learning 

from users’ errors. Assuming the user made error X: !ا��� 
and the system gave two possible outputs Y1: !�Cا� and 

Y2: !�3ا� , assuming the user selects Y1 as the correct 

output, the system will recheck the ranking variables with 

the correct output that is to recheck the value of V3 ~ V6 

between X and Y1 and stores the result. This is done 

every time the user makes a mistake, the variable with the 

best results is the variable with the most effect on the 

ranking equation thus the system will increase its weight 

and lower the weights of other variables with smaller  

results. Table VIII explains how this is done. 

 
TABLE VIII 

WEIGHTS AUTO CHANGING 

X Y Shape 

Similarity 

(V3i) 

Location 

Similarity 

(V4i) 

Soundex 

Function 

(V5i) 

Ranking & 

Frequency 

(V6i) 

i=1 

 ا�0(�
 

 0.864 1 1 0.750 ا�1(�

Total Sum(S)  S= S+(V3i+V4i+V5i+V6i) = 3.614 

Ranking 

Weights =  

A= 

∑(V3i)/S  

0.208 

B= 

∑(V4i)/S 

0.277 

C= 

∑(V5i)/S 

0.277 

D= 

∑(V6i)/S 

0.239 

i=2 

 0.051 1 0.688 0.688 ���3 آ���

Total Sum (S)  S = 3.614 +(V3i+V4i+V5i+V6i) = 6.040 

Ranking 

Weights = 

A=0.238 B=0.279 C=0.331 D=0.152 
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Table VIII shows an example of two mistakes  (i=1, 

i=2) , the first one X = !ا��� and the user selects Y = !�Cا� 
from the output list as the correct word , the system 

calculates the variables for Y then sum all of them and 

calculates new percentages by dividing each variable 

value on the total sum.  

For  i=2 , X= D�	آ and the user selects Y = D�	� the 

system calculates the new variables and then add them to 

the values of the variables in the case of i=1, this is also 

done to the sum and then finds the new percentages.  

       As seen in Table VIII the soundex weight increased 

noticeably because the user choice was based on outputs 

pointing to errors related by sound. Also this can be used 

as a history table for the user selected outputs which can 

help if the user did the same mistake again; the system 

checks the user history before checking with the 

dictionary. 
 

C.       Initial Tests 

      An initial test was done using 100 articles from the 
380 articles used in testing the categorizing algorithm, 
(section IV). The articles were tested twice, the first time 
by adding manual errors; that is we manually introduced 
mistakes inside each article, the second time a random 
letter changing automated system was used to generate 
errors inside each article. Table IX shows the results, 
gives an indication about the early tests and the pass 
percentages (no auto learning technique is used in the 
tests). The tests are made with A=0.2, B=0.25, C=0.05, 
D=0.5.      
        From the results in Table IX we can conclude that 
adding categorized dictionaries will improve  the results 
and will speed up the system (since we are using shorter 
lists of reference words which means a smaller 
dictionary).  
        In Table X we show some complexity and response 
time results for our algorithms (Percentage and 
Difference Categorization Algorithm and the Spelling 
Algorithm), which are used in the spelling mechanism 
based on dynamic categorized dictionaries. 
        It is worth mentioning that the process of selecting 
the spelling dictionary and the values of the weights can 
be highly customized by the user.  Future work will focus  
on creating different types of tests in order to decide what 
are the best values to use for each parameter, when to 
adopt auto learning process and what are the best 
dictionaries to use and when, as well as they best-selling 
databases structures which are most likely to improve the 
performance of the entire algorithm. 
 

TABLE IX 
EARLY TESTS 

# Test Type Dictionary Pass Percentage 

1 Speed Writing 

 (100 articles) 

Auto Categorized 82% 

General 77% 

2 Auto generated errors 

(1 and 2 errors per 

word possible)  

(100 articles)  

  

 

Auto Categorized 

(1 letter error) 

90% 

Auto Categorized 

(2 letters error) 

83% 

General 

(1 letter error) 

88% 

General 

(2 letters error) 

80% 

 

TABLE X 
COMPLEXITY AND  RESPONSE TIME 

Percentage and  Difference Categorization  Algorithm 

Complexity of  the algorithm O(M*N). 

Where M is the number of 

words in the input text and N 

is the categorized dictionary 

size 

Average Response1  

(Time on Average Machine2) 

0.102 Seconds 

 

Spelling Algorithm 

Complexity of  the algorithm O(M*N) . 

Where M comes from the 

complexity calculations of 

the ranking variables and N 

is the  dictionary (in use) size 

 Average Response3 Using : (Time on Average Machine2) 

General Dictionary of  190,000 

words  with frequency >9 (not 

categorized)  

3.160 Seconds for each word 

Categorized Dictionary of  around 

10,000 words 

0.132 Seconds for each word 

1Average time was calculated by testing the time of the 380 testing file. 
2Average Machine: Intel(R) Core(TM) Due CPU, P8400 @ 2.26 GHZ & 2 

GB of RAM, OS: Microsoft Windows XP(TM). 
3 Average time was calculated by testing 100 misspelled words.  

VI. CONCLUSION 

      We presented a spelling approach that is supported by 
dynamic categorized dictionaries, customized ranking 
variables, with the aid of a categorizing approach and 
auto learning spelling mechanism. In our research we 
employed a statistical/Corpus-based approach and data 
obtained from the Arabic Wikipedia and Palestinian 
newspaper. We described how the corpus was built 
especially the categorized Wikipedia corpus. Based on 
corpus statistics we constructed databases of words and 
their frequencies as single, double and triple word 
expressions and   customized dictionaries based on 
automated Wikipedia articles filtration. Then we used 
those dictionaries as the infrastructure for our spelling 
and error correction method. Our spelling technique is 
based on earlier work but incorporating new spelling 
variables and dynamic dictionaries. We briefly reported 
on the results of preliminary testing, both on 
categorization and spelling. While the results reported 
here are promising, they must be viewed as work in 
progress, still in need of more testing, refining, 
integration and deployment in real life settings and 
evaluation by users in a real working environment. There 
will also be a need to work on better data structures to 
improve the performance of the tools to allow for more 
transparent integration into working systems.   
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